МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ»

ДИСПЕРСИОННЫЙ АНАЛИЗ

ПРАКТИКУМ

Для студентов III–IV курса дневного и заочного отделений геологического факультета по дисциплине «Математические методы в геологии» направления подготовки «Геология» (бакалавры) и специальности «Прикладная геология»

Пермь 2016

Составитель: к.г.-м.н. Л.А. Христенко

Дисперсионный анализ[Электронный ресурс]: практикум / сост. Л.А. Христенко; Перм. гос. нац. исслед. ун-т. – Электрон. дан. – Пермь, 2016. – 5,45 Мб. – Систем. требования: процессор Intel Pentium, 1,3 ГГц; 40 Мб HDD; 256 Мб RAM; операц. система Windows 98 и выше; рекомендуемое разрешение 1024х576; подключение к сети Интернет.

Издание содержит подробные рекомендации для выполнения лабораторных заданий по теме «Дисперсионный анализ» в среде Microsoft Excel.

Предназначено для студентов III-IV курсов дневного и заочного отделений геологического факультета по дисциплине «Математические методы в геологии» направления подготовки 05.03.01 «Геология» (бакалавры) и специальности 21.05.02 «Прикладная геология».

Издается по постановлению методической комиссии геологического факультета Пермского государственного национального исследовательского университета

Введение

Дисперсионный анализ (ДА) проводится для оценки степени влияния различных факторов на изменчивость одного и того же признака.

По количеству оцениваемых факторов дисперсионный анализ бывает одно-, двух- и многофакторным.

Настоящий практикум содержит подробные рекомендации для выполнения лабораторных заданий по теме «Дисперсионный анализ» в среде Microsoft Excel. В основу заданий положены задачи из сборника О.И. Гуськова, П.И. Кушнарева, С.М. Таранова (Математические методы в геологии. Сборник задач. М.: Недра, 1991). Задания были дополнены и оформлены в электронном виде кандидатом геолого-минералогических наук, доцентом В.И. Набиулиным.

Практикум включает в себя 3 задания, для выполнения которых используются схемы

однофакторного дисперсионного анализа;

– двухфакторного дисперсионного анализа без повторений;

- двухфакторного дисперсионного анализа с повторениями.

Целью практикума является закрепление теоретического материала, полученного на лекциях, приобретение практических навыков выполнения дисперсионного анализа и интерпретации полученного результата.

С помощью встроенных в пакет Анализ данных процедур Однофакторный дисперсионный анализ, Двухфакторный дисперсионный анализ без повторений, Двухфакторный дисперсионный анализ с повторениями студентам предлагается проверить правильность вычислений.

Для лучшего усвоения теоретического материала и навыков работы с табличным процессором Microsoft Excel в заданиях предусмотрено использование студентами готовых шаблонов таблиц и диаграмм. Используемые формулы прописаны рядом с полями, отведенными для расчетов.

3

Однофакторный дисперсионный анализ

Задача 1. При разведке двух месторождений силикатного никеля, приуроченных к латеритной коре выветривания ультрамафитов, в вертикальных разрезах коры выветривания сверху вниз выделены 6 зон, отличающихся минеральным составом и текстурными особенностями:

- 1) зона железистых стяжений;
- 2) зона бесструктурных охр;
- 3) зона конечных структурных охр;
- 4) зона структурных полуохр;
- 5) зона выщелоченных материнских пород;
- 6) зона дезинтегрированных материнских пород.

Для изучения химического состава коры выветривания и поведения различных химических элементов в процессе корообразования из каждой зоны обоих месторождений были отобраны пробы, по которым выполнены анализы на Fe₂O₃, NiO, CoO, SiO₂, MgO, Al₂O₃ и Cr₂O₃. (О.И. Гуськов, П.И. Кушнарев, С.М. Таранов Математические методы в геологии. Сборник задач. М.: Недра, 1991, с. 5).

Задание 1. Сравнить подвижность различных химических элементов в зоне гипергенеза в процессе корообразования с помощью однофакторного дисперсионного анализа (ОДА), оценив влияние фактора «Зональность коры выветривания гипербазитов».

Оценка влияния анализируемого фактора на однородность выборки производится путем разделения общей дисперсии признака $S_{oбщ}^2$ на два вида: 1) межгрупповую или факторную дисперсию S_{ϕ}^2 и 2) внутригрупповую или остаточную дисперсию $S_{ocm.}^2$ ($S_{oбщ}^2 = S_{\phi}^2 + S_{ocm}^2$), после чего проводится проверка гипотезы о влиянии факторов с помощью критерия Фишера. В практикуме выполнение ОДА приводится для Fe₂O₃. Поведение других химических элементов в процессе корообразования исследуется аналогичным образом.

Порядок выполнения однофакторного дисперсионного анализа

1) Скопируйте в Таблицу 2 содержания элементов из графы В Таблицы 1 с учетом номеров зон.

2) В ячейки **E44:J44** впишите групповые частоты \mathbf{n}_{j} по каждому уровню фактора «Зональность».

3) В ячейке К44 рассчитайте общее количество значений признака N. Для этого воспользуйтесь командой Σ на вкладке Главная в группе Редактирование и выделите курсором мыши интервал E44:J44.

	K44 ▼ (* <i>f</i> ≤ =CYMM(E44:J44)									
- 1	D	E	F	G	Н	1	J	K		
11										
12	ания	Таблица 2								
13		Группирован	ние исходн	ых данных дл	я однофактор	оного дисперсио	нного анализа			
14		Уров	ни фактора	а "Зональност	гь коры вывет	гривания гиперб	іазитов"			
15		1-я зона	2-я зона	3-я зона	4-я зона	5-я зона	6-я зона			
		железистых	бесструкт	конечных	структурных	выщелоченных	дезинтегриров			
	Noino liboo	стяжений	урных охр	структурных	полуохр	материнских	анных			
				охр		пород	материнских			
16							пород			
17	1	67.69	68.02	68.06	31.18	11.73	5.74			
18	2	68.33	67.95	64.88	24.95	15.86	2.41			
19	3	65.35	54.96	53.6	25.69	11.08	12.73			
20	4	67.67	65.11	67.01	25.95	12.18	9.41			
21	5	61.44	68.69	59.42	29.21	16.07	7.49			
22	6	68.3	64.93	61.47	27.33	22.71				
23	7	67.4	66.36	67.75	22.34	23.03				
24	8	67.17	66.38	68.89	33.01	16.11				
25	9	60.6	64.81	54.27	26.02	10.51				
26	10	66.1	67.61	62.52	18.16					
27	11	65.17	63.98	67.26	43.81					
28	12	65.92	69.4	65.38	27.24					
29	13	62.02	72.88	58.1	30.46					
30	14	66.71	66.02	68.19	26.74					
31	15	62.45	62.84	64.83	39.31					
32	16	63.63	72.26	58.33	32.94					
33	17	59.29	66.68	62.49	36.72					
34	18	64.32	62.75	63.49	28.76					
35	19	65.68	66.89	63.89	35.75					
36	20	68.02	62.38	64.95	25.44					
37	21	67.61	67.79	59.98	29.12					
38	22	58.62	64.69	66.79	45.27					
39	23	67.24								
40	24	58.91								
41	25	60.49								
42	26	45.49								
43	27	64.91								
44	Групповые частоты n j	27	22	22	22	9	5	107		

4) В ячейке К45 вычислите генеральное среднее по всей выборке \overline{U}

Для этого

• поместите курсор мыши в ячейку К45;

• на вкладке Главная в группе Редактирование нажмите на стрелку кнопки Σ и выберите команду Среднее;

• выделите мышкой интервал Е17:Ј43;

	D	E	F	G	Н		J	К
41	25	60.49						
42	26	45.49						
43	27	64.91						
44	Групповые частоты п ј	27	22	22	22	9	5	107
	Групповые средние по уровням	63.946	66.063	63.252	30.245	15.476	7.556	
45	фактора "Зональность" Ц							=CP3HA4(E17:J43)

• нажмите клавишу Enter.

5) Рассчитайте суммы квадратов общих $SS_{oбщ}$, факторных SS_{ϕ} . и остаточных SS_{ocm} отклонений значений признака от своего среднего.

а) Чтобы рассчитать
$$SS_{oбщ.} = \sum_{j=1}^{m} \sum_{i=1}^{n_j} (U_{ij} - \overline{U})^2$$

• в ячейку L17 Таблицы 3 впишите формулу вычисления квадратов отклонений значений признака от генерального среднего =(E17-\$K\$45)^2;

	L	М	N	0	Р	Q					
12	Таблица 3										
13											
	Квадраты отклонений изучаемого признака от общего среднего:										
14	(U ij - U ср.общ.) ²										
15	Уровни фактора "Зональность коры выветривания гипербазитов"										
	1-я зона	2-я зона	3-я зона	4-я зона	5-я зона	6-я зона					
	железистых	бесструкт	конечных	структурн	выщелоче	дезинтегрир					
16	стяжений;	урных	структурн	ых	нных	ованных					
17	=(E17-\$K\$45)^2	1									
18		-									

• протяжкой вправо ячейки L17 за правый нижний угол заполните интервал L17: Q17;

	L	М	N	0	Р	Q
	1-я зона	2-я зона	3-я зона	4-я зона	5-я зона	6-я зона
	железистых	бесструкт	конечных	структурн	выщелоче	дезинтегрир
16	стяжений;	урных	структурн	ых	нных	ованных
17	292.2	303.5	304.9	377.0	1510.7	2012.2
18						

• протяжкой вниз поочередно ячеек L17, M17, N17, O17, P17, Q17, за правые нижние углы заполните интервалы L17: L43, M17: M38, N17: N38, O17:O38, P17:P25, Q17:Q21;

	L	М	N	0	Р	Q
12	Таблица 3					
13						
	Квадраты с	тклонений	изучаемог	о признака	от общего	среднего:
14			(U ii - U c	р.общ.) ²		
15	Уровни фак	тора "Зона	льность ко	ры выветр	ивания гиг	ербазитов"
	1-я зона	2-я зона	3-я зона	4-я зона	5-я зона	6-я зона
	железистых	бесструкт	конечных	структурн	выщелоч	дезинтегрир
16	стяжений;	урных	структурн	ых	енных	ованных
17	292.2	303.5	304.9	377.0	1510.7	2012.2 -
10	31/ /	301.1	204.0	657.8	1206.7	2322.0
10	217.6	19.0	9.0	620.4	1561.6	1433.9
20	291.5	210.6	269.4	607.5	1475.9	1696.4
21	117.6	327.3	77.8	457.4	1192.1	1858.2
22	313.4	205.4	118.2	541.4	777.7	1000.2
23	282.3	248.5	294.2	798.5	760.0	
24	274 7	249.1	334.6	309.3	1189.4	
25	100 1	202.0	13.5	604.0	1607.0	
26	240.3	289.4	142.1	1052.2		
27	212.4	179.1	277.6	46.1		
28	234.8	353.5	218.5	545.6		
29	130.5	496.5	56.3	405.5		
30	259.6	237.9	309.5	569.2		
31	140.5	149.9	202.6	127.4		
32	169.8	469.3	59.8	311.8		
33	75.6	258.7	141.4	192.6		
34	188.3	147.7	166.2	476.9		
35	227.5	265.4	176.7	220.4		
36	303.5	138.8	206.0	632.9		
37	289.4	295.6	88.0	461.3		
38	64.4	198.6	262.2	28.4	7	
39	277.0					
40	69.1					
41	97.9					
42	26.1					
43	204.9	V				

• в ячейке **F50** выполните расчет суммы квадратов отклонений значений признака от общего среднего, для этого

- поместите курсор мыши в ячейку **F50**;

– воспользуйтесь командой Σ на вкладке **Главная** в группе Редактирование и выделите курсором мыши интервал L17:Q43 (Таблицу 3);

– Enter.

	F50	- (9	<i>f_x</i> =C	<i>f</i> _≪ =CYMM(L17:Q43)			
4	E	F	G	Н			
49							
50	SS общ	45542,2619	Сумма данных таблицы 3	SS общ = су	мма (U _{ij} - U ср.	общ.) ²	

б) Чтобы рассчитать
$$SS_{\phi} = \sum_{j=1}^{m} n_j \cdot (\widehat{U}_j - \overline{U})^2$$

• определите групповые средние на каждом уровне фактора зональность \hat{U}_i , для этого

- поместите курсор мыши в ячейку Е45 Таблицы 2;

- выберите команду Среднее;
- выделите мышкой интервал E17:E43;

- Enter;

– протяжкой вправо ячейки E45 за правый нижний угол заполните интервал E45: J45;

	С	D	E	F	G	Н		J
43		27	64.91					
44		Групповые частоты n j	27	22	22	22	9	5
45		Групповые средние по уровням фактора "Зональность" U ср.гр.ф	=CP3HA4(E17:E43) r	66.063	63.252	30.245	15.476	7.556

• в ячейку E46 впишите формулу вычисления квадратов отклонений групповых средних значений признака от генерального среднего =(E45-\$K\$45)^2* E44;

• Enter;

• протяжкой вправо ячейки E46 за правый нижний угол заполните интервал E46: J46;

	С	D	E	F	G	Н		J
45		Групповые средние по уровням фактора "Зональность" U ср.гр.ф	63.946	66.063	63.252	30.245	15.476	7.556
		Квадраты отклонений						
		групповых						
		средних от общего среднего,		5261.891	3523.217	9112.422	11101.885	9262.803
		взвешенные на частоты						
46		= (U ср.гр.ф - U ср.общ.)2 * n j	=(E45-\$K\$45)^2*E44					

• в ячейке F51 выполните расчет суммы квадратов отклонений групповых средних по фактору от общего среднего, для этого

- поместите курсор мыши в ячейку F51;

– воспользуйтесь командой Σ и выделите курсором мыши интервал E46:J46;

– Enter.

в) Чтобы рассчитать
$$SS_{ocm.} = \sum_{j=1}^{m} \sum_{i=1}^{n_j} (U_{ij} - \widehat{U}_j)^2$$

• в ячейку S17 Таблицы 4 впишите формулу вычисления квадратов отклонений исходных значений U_{ij} от групповых средних =(E17-E\$45)^2 (ссылка формата E\$45 является относительной по столбцу и абсолютной по строке, т.е. при перемещении по ячейкам выше или ниже, ссылка изменяться не будет. А при движении влево или вправо будет изменяться столбец);

• Enter;

• протяжкой вправо ячейки E17 за правый нижний угол заполните интервал S17:X17;

	R	S	Т	U	V	W	Х					
11												
12		Таблица 4										
13												
		Квадраты остаточных отклонений исходных значений от групповых										
14		средних: (U ij - U ср.гр.ф.) ²										
15		Уровни фактора "Зональность коры выветривания гипербазитов"										
			2 0 00112	3-я зона	4 9 20112	5-я зона	6-я зона					
		1-я зона железистых		конечных		выщелочен	дезинтегрир					
		стяжений;	ных охр.	структурных	попуохо.	ных	ованных					
16			non onp,	oxp;	nosiyoxp,	матерински	матерински					
17		=(E17-E\$45)^2	3.831	23.114	0.873	14.029	3.298					

• протяжкой вниз ячеек S17, T17, U17, V17, W17, X17, за правые нижние углы поочередно заполните интервалы S17:S43, T17:T38, U17:U38, V17:V38, W17:W25, X17:X21;

	R	S	Т	U	V	W	Х				
12		Таблица 4									
13											
		Квадраты остат	очных откл	онений исх	одных зна	чений от гр	упповых				
14			средни	ıx: (Uij-U	J ср.гр.ф.) ²						
15		Уровни фактора "Зональность коры выветривания гипербазитов"									
16		1-я зона железистых стяжений;	2-я зона бесструктур ных охр;	3-я зона конечных структурных охр;	4-я зона структурных полуохр;	5-я зона выщелочен ных матерински	6-я зона дезинтегрир ованных матерински				
17		14.021	3.831	23.114	0.873	14.029	3.298				
18		19.223	3.562	2.649	28.042	0.148	26.481				
19		1.972	123.271	93.166	20.752	19.321	26.770				
20		13.871	0.908	14.121	18.451	10.861	3.437				
21		6.278	6.903	14.686	1.072	0.353	0.004				
22		18.961	1.283	3.176	8.500	52.337	[]				
23		11.933	0.088	20.230	62.496	57.070					
24		10.397	0.101	31.784	7.643	0.403					
25		11.193	1.569	80.681	17.854	24.657					
26		4.642	2.394	0.536	146.058						
27		1.499	4.338	16.062	183.997						
28		3.898	11.137	4.527	9.033						
29		3.708	46.475	26.546	0.046						
30		7.642	0.002	24.381	12.288						
31		2.237	10.386	2.489	82.166						
32		0.100	38.406	24.229	7.261						
33		21.674	0.381	0.581	41.920						
34		0.140	10.974	0.057	2.207						
35		3.008	0.684	0.407	30.300						
36		16.601	13.562	2.882	23.092						
37		13.428	2.983	10.708	1.267						
38		28.362	1.884	12.516	225.737						
39		10.853									
40		25.357									
41		11.941									
42		340.608									
43		0.930									

• в ячейке F52 выполните расчет суммы квадратов отклонений исходных значений U_{ij} от групповых средних, для этого

- поместите курсор мыши в ячейку **F52**;

– воспользуйтесь командой Σ и выделите курсором мыши интервал S17:X43 (Таблица 4);

- Enter;

	D	E	F	G	Н
51	Сумма квадратов отклонений групповых средних по фактору "Зональность" от общего среднего	SS φ	43072.9085	Сумма данных строки 46	SS ф = сум
52	Сумма квадратов остаточных отклонений исходных значений признака от групповых средних	SS oct	=СУММ(S17:X43)	Сумма данных таблицы 4	SS oct = cy
51 52	"Зональность" от общего среднего Сумма квадратов остаточных отклонений исходных значений признака от групповых средних	SS oct	=СУММ(S17:X43)	стр Сум дан таб	<mark>оки 46</mark> има іных ілицы 4

• в ячейке **F53** выполните проверочный расчет SS_{ocm} как разность $SS_{oful} - SS_{dl}$ по формуле = **F50-F51**.

Результаты вычислений в ячейках F52 и F53 должны получиться одинаковыми.

	D	E	F	G	[
51	Сумма квадратов отклонений групповых средних по фактору "Зональность" от общего среднего	SS ф	43072.9085	Сумма данных строки 46	
52	Сумма квадратов остаточных отклонений исходных значений признака от групповых средних	SS oct	2469.3534	Сумма данных таблицы 4	
53	Проверка SS ост = SS общ - SS ф	SS oct	=F50-F51		

6) Рассчитайте дисперсии: общую $S_{oбщ.}^2 = \frac{SS_{oбщ.}}{N-1}$, факторную

$$S_{\phi.}^{2} = \frac{SS_{\phi.}}{m-1}$$
 и остаточную $S_{ocm.}^{2} = \frac{SS_{ocm.}}{N-m}$. Для этого

• в ячейку E57 впишите выражение =F50/(К44-1) расчета общей дисперсии;

• в ячейку E58 впишите выражение =F51/(6-1) расчета факторной дисперсии (6 – количество уровней фактора);

• в ячейку E59 впишите выражение =F52/(К44-6) расчета остаточной дисперсии.

	I	57 ▼ (* <i>f</i> _x =F50/(K44	4-1)			
	С	D	E	F	G	
56						
57		Общая дисперсия S ² общ =	429.6440	S ² общ = SS	общ / (N -1)	
58		Дисперсия фактора А S ² ф =	8614.5817	S ² φ = SS φ	/ (m -1)	
59		Остаточная дисперсия S ² ост =	24.4490	S ² oct = SS o	ост / (N-m)	

7) В ячейке **F64** рассчитайте $F_{pacy.}$ критерий Фишера по формуле =**E58/ E59**. Оцените с его помощью влияние фактора «Зональность». Если $F_{pacy.} < F_{meop}$, то нулевая гипотеза об отсутствии влияния анализируемого фактора принимается, а если $F_{pacy.} \ge F_{meop.}$, то отвергается, т.е. влияние фактора на изменчивость признака признается статистически значимым.

	Буфер обмена	5	Шрифт	6	i l	Выравнивание	6	Число 5		, i i
	F64	• ()	<i>fx</i> =E58/E59							
			D		E	F	G	Н	l. I	
61	Формула	критер	ия Фишера:							
62	по оцени	ваемо	му фактор	у: F	$\phi = S^2_{\phi} / S^2_{\phi}$	ост				
63										
64	Значения	критер	оия Фишера	:	F факт. =	352.348416	>	F теор.=	2.30	
65	Числа сте	епеней	свободы		f ₁ = m - 1 = 0	6 -1 = 5	f ₂ =N-m=1	07 - 6 = 101		
66					т.е. влияние	фактора "Зо	нальность ко	ры выветрив	ания" существе	нно
~ 7										

 $F_{pacy.}$ =352, т.е. > $F_{meop.}$ =2.3, следовательно нулевая гипотеза об отсутствии влияния фактора на изменчивость признака отклоняется. Вывод: Влияние фактора «Зональность» есть, и оно значимо.

8) Рассчитайте вклад в общую дисперсию учтенного (E_{ϕ}) и неучтенных (E_{ocm}) факторов в процентах следующим образом:

• в ячейку **J72** впишите выражение для вычисления E_{ϕ} =**F51*100/F50**;

• в ячейку J73 впишите выражение для вычисления *E*_{ocm} =F52*100/F50;

• в ячейке **J74** сосчитайте сумму $E_{\phi} + E_{ocm.}$ – она должна составить 100 %.

<u> </u>		
	J72 • (
	D E F G H I	J
68	Расчетные формулы для оценки вкладов факторов в общую дисперсию:	
69	вклад учтенного фактора: E_{ϕ} = SS $_{\phi}$ * 100 / SS $_{\rm oбщ}$	
70	вклад неучтенных факторов: E _{ост} = SS _{ост} * 100 / SS _{общ}	
71		
72	Вклад в общую дисперсию учтенного фактора "Зональность коры выветривания": $E_{\varphi}(\%)$ =	94.58
73	Вклад в общую дисперсию неучтенных факторов: Е ост (%) =	5.42
74	Сумма	100.00

9) Постройте график изменения содержаний оксида железа Fe_2O_3 по зонам. Для этого

• щелчком мыши выделите графический шаблон «Характер изменения содержаний Fe₂O₃ по различным зонам коры выветривания гипербазитов»;

• воспользуйтесь командой Выбрать данные вкладки Конструктор и укажите новый диапазон ячеек во всплывшем окне Выбор источника данных, для этого

– выделите Ряд1 слева – Элементы легенды (ряды) и щелкните по вкладке Изменить;

Выбор источника данных	? ×
Диапазон данных для диаграммы:	
Строка/столбец	
Элементы легенды (ряды)	Подписи горизонтальной оси (категории)
😤 Добавить 🏾 🗹 Изменить 🗙 Удалить 🔹 🔹	☑ Изменить
Ряд1	1
Скрытые и пустые ячейки	ОК Отмена

– во всплывшем окне **Изменение ряда** щелкните по красной стрелке справа в строке **Значения**;

Изменение ряда	? X
<u>И</u> мя ряда: 	🔝 выберите диапазон
<u>З</u> начения: ={1}	I
	ОК Отмена

- заполните всплывшее одноименное окно Изменение ряда, выделив мышкой интервал E45:J45 групповых средних по уровням фактора «Зональность» и закройте окно щелчком по кнопке 🗵 или по клавише Enter;

Изменение ряда	? ×
=Шаблон!\$E\$45:\$J\$45	

– закройте вновь всплывшее окно Изменение ряда щелчком по кнопке ОК или клавише Enter.

Изменение ряда	a	? ×
<u>И</u> мя ряда:		3 Выберите диапазон
значения:		
=Шаблон!\$E\$45:\$J\$45	<u>.</u>	= 63.946 66.063
	ОК	Отмена

• В повторно открывшемся окне Выбор источника данных поменяйте Подписи горизонтальной оси (категории) – справа, для этого

- щелкните по вкладке Изменить;

Зыбор источника данных 🔋 🗙					
Диапазон данных для диаграммы: =Шаблон!\$E\$45:\$J\$45					
Строка/стол	бец				
Элементы легенды (ряды)	Подписи горизонтальной оси (категории)				
🚰 Добавить 📝 Изменить 🗙 Удалить 🔹 🐥	Изменить				
Pag 1	1 2 3 4 5 v				
Скрытые и пустые ячейки	ОК Отмена				

 в открывшемся окне Подписи оси щелкните по красной стрелке справа;

Подписи оси	2 ×
Диапазон <u>п</u> одписей оси:	ОК Отмена
	ОК О

– заполните всплывшее одноименное окно, выделив мышкой интервал E16:J16 названий зон коры выветривания и закройте окно щелчком по кнопке ⊠ или по клавише Enter;

Подписи оси	? ×
€Шаблон!\$E\$16:\$J\$16	

– закройте окна Подписи оси и Выбор источника данных щелчками по кнопкам ОК.

Выбор источника данных	? ×				
Диапазон данных для диаграммы: =Шаблон!\$E\$45:\$J\$45					
Строка/столбец					
Элементы легенды (ряды)	Подписи горизонтальной оси (категории)				
🚰 Доб <u>а</u> вить 📝 <u>И</u> зменить 🗙 <u>У</u> далить 💮 🦊	Изменить				
Ряд1	1				
	2				
	3				
	4				
	5				
Скрытые и пустые ячейки	ОК Отмена				

График «Характер изменения содержаний Fe₂O₃ по различным зонам коры выветривания гипербазитов» будет выглядеть следующим образом:

10) Проверьте полученные результаты с помощью встроенной в пакет Анализ данных программы Однофакторный дисперсионный анализ. Для этого

• на вкладке Данные в группе Анализ нажмите кнопку Анализ данных и в диалоговом окне Анализ данных выберите режим Однофакторный дисперсионный анализ;

Группировать Ст	Промежуточные итоги руктура	●를 Отобразить дета ■를 Скрыть детали	ли	Ц Ан	ализ данных Анализ
Анализ Инструмент Однофакт Двухфакт Двухфакт Кореляци Ковариаци Описатель Экспоненц Двухвыбо Анализ Фу Гистограм	Данных гы анализа орный дисперсио орный дисперсио орный дисперсио ия из мая статистика иальное сглажив рочный F-тест дл рье ма	нный анализ нный анализ с повторе нный анализ без повто ание ія дисперсии	ниями рений		? Х ОК Отмена <u>С</u> правка

• в одноименном диалоговом окне задайте установки:

<u>Входной интервал</u> – введите ссылку на ячейки, содержащие анализируемые данные E16:J43.

Группирование – установите флажок в поле по столбцам.

<u>Метки</u> – установите флажок в поле <u>Метки в первой строке</u>, чтобы названия уровней фактора, содержащиеся в первой строке исходных данных **E16:J16**, отобразились названиями групп в результатах.

<u>Уровень значимости α – 0.05.</u>

<u>Выходной интервал</u> – укажите в виде ссылки на левую верхнюю ячейку выходного диапазона, например **D81**.

Входные данные		 OK
В <u>х</u> одной интервал:	\$E\$16:\$J\$43	UK
Группирование:	по стол <u>б</u> цам	Отмена
	О по строкам	<u>С</u> правка
Метки в первой строке		
<u>А</u> льфа: 0.05		
_		
Параметры вывода		
• Выходной интервал:	\$M\$81	
Повый рабочий <u>л</u> ист:		
C		

	D	E	F	G	Н	I	Строка формун
81	Однофакторный дисперсионный ан	ализ					
82							
83	ИТОГИ						
84	Группы	Счет	Сумма	Среднее	Дисперсия		
85	1-я зона железистых стяжений;	27	1726.53	63.945556	23.249149		
86	2-я зона бесструктурных охр;	22	1453.38	66.062727	13.577297		
87	3-я зона конечных структурных охр;	22	1391.55	63.252273	19.501352		
88	4-я зона структурных полуохр;	22	665.4	30.245455	44.33594		
89	5-я зона выщелоченных материнскі	9	139.28	15.475556	22.397253		
90	6-я зона дезинтегрированных матер	5	37.78	7.556	14.99778		
91							
92							
93	Дисперсионный анализ						
94	Источник вариации	SS	df	MS	F	Р-Значение	F критическое
95	Между группами	43072.908	5	8614.5817	352.34842	3.07003E-62	2.304396415
96	Внутри групп	2469.3534	101	24.449043			
97							
98	Итого	45542.262	106				

Сравните рассчитанные по формулам значения средних на уровнях фактора «Зональность», дисперсий, критериев Фишера со значениями рассчитанными автоматически.

Увеличение средних содержаний химических элементов от верхней зоны к нижней будет указывать на их вынос из коры выветривания, т.е. будет свидетельствовать о высокой подвижности химического элемента в зоне гипергенеза. Уменьшение же средних содержаний элементов от верхней зоны к нижней будет указывать на их малую подвижность и накопление в коре выветривания.

Какой вывод о подвижности Fe₂O₃ в зоне гипергенеза в процессе корообразования вы можете сделать на основании выполненного однофакторного дисперсионного анализа?

Двухфакторный дисперсионный анализ без повторений

Задача 2. На редкометальном месторождении отмечены процессы выражены предрудного метасоматоза. которые в появлении новообразованных минералов: альбита, карбонатов и кварца. По степени метасоматических изменений породы разделены на 3 класса: 1) слабо измененные; 2) средне измененные; 3) сильно измененные. Высказано предположение о том, что предрудный метасоматоз привел к изменению петрофизических свойств пород (модуля сдвига, модуля Юнга, объемной массы и эффективной пористости) и поэтому явился благоприятным фактором для рудоотложения. (О.И. Гуськов, П.И. Кушнарев, С.М. Таранов Математические методы в геологии. Сборник задач. М.: Недра, 1991, с. 75)

Задание 2. Оцените влияние степени метасоматического изменения и состава вмещающих пород на их петрофизические свойства используя двухфакторный дисперсионный анализ (ДДА) без повторений.

Суть двухфакторного дисперсионного анализа без повторений заключается в разделении общей дисперсии $S_{oбщ}^2$ на три компоненты: факторные дисперсии 1) S_A^2 ; 2) S_B^2 , связанные с влиянием учтенных факторов A и B, и 3) остаточную дисперсию $S_{ocm.}^2$, отражающую влияние неучтенных факторов, после чего проводится проверка гипотезы о влиянии факторов с помощью критерия Фишера.

В качестве фактора A в задаче выступает состав пород. По составу выделено 11 разновидностей пород, которые, в свою очередь, будут представлять уровни фактора A, т.е. p=11. В качестве фактора B выступает степень метасоматического изменения пород. По степени метасоматического изменения породы разделены на 3 класса, т.е. q=3. В практикуме выполнение ДДА без повторений приводится для оценки влияния степени метасоматического изменения и состава вмещающих пород на модуль Юнга.

Порядок выполнения двухфакторного дисперсионного анализа без повторений

1) Скопируйте в **Таблицу 2** исходные данные из **Таблицы 1** в соответствии с уровнями факторов *A* и *B*, воспользовавшись клавишей **Ctrl**.

	E	F	G	Н	1
11	Таблица 2				
12	2 Группирование исходных данных для двухфакторного дисперсионного анализа без повторений				
13					
14		Уровни фактора	(степень а)		
15	уровни фактора A (вещественный состав торных пород)	A	Слабая	Средняя	Сильная
16			B ₁	B ₂	B ₃
17	Аргиллиты	A ₁	7.85	0	5.7
18	Алевролиты	A ₂	7.89	7.43	6.51
19	Песчаники	A_3	8.18	8.12	7.05
20	Переслаивание аргиллитов и песчаников	A ₄	8.06	7.56	6.87
21	Переслаивание алевролитов и песчаников	A_5	8.65	8.55	6.46
22	Переслаивание аргиллитов, алевролитов и песчанико	A_6	9.03	8.77	7.08
23	Фельзиты	A ₇	8.23	7.52	6.36
24	Кварцевые порфиры	A ₈	8.14	7.61	7.08
25	Спессартиты	A ₉	8.12	7	5.88
26	Микродиориты	A ₁₀	10.1	9.55	9.01
27	Кузелиты (автометаморфизованные авгитовые порфи	A ₁₁	9.12	8.32	7.52

2) Вычислите групповые средние по уровням фактора А с

помощью формулы $\widehat{U}_{A_i}=\frac{1}{q}\cdot \sum_{j=1}^{q}U_{ij}$. Для этого

• поместите курсор мыши в ячейку J17;

• выберите команду Среднее и выделите мышкой интервал G17:I17;

• Enter;

• протяжкой вниз ячейки J17 за правый нижний угол заполните интервал J17: J27.

	F	G	Н	L.	J	
14	Уровни фактор	Уровни (м	фактора В етасоматоз	(степень а)	Групповые средние по	B
15	aA	Слабая	Средняя	Сильная	уровням	ср
16		B ₁	B ₂	B ₃	фактора А (U ср.гр.Аі)	(U (
17	A ₁	7.85	0	=C	РЗНАЧ(<mark>G17:I</mark>	17)
18	A ₂	7.89	7.43	6.51	7.28	
19	A ₃	8.18	8.12	7.05	7.78	
20	A ₄	8.06	7.56	6.87	7.50	
21	A ₅	8.65	8.55	6.46	7.89	
22	A ₆	9.03	8.77	7.08	8.29	
23	A ₇	8.23	7.52	6.36	7.37	
24	A ₈	8.14	7.61	7.08	7.61	
25	A ₉	8.12	7	5.88	7.00	
26	A ₁₀	10.1	9.55	9.01	9.55	
27	A ₁₁	9.12	8.32	7.52	8.32	/

3) Вычислите *групповые средние* по уровням фактора *B* с помощью формулы $\hat{U}_{B_j} = \frac{1}{p} \cdot \sum_{i=1}^{p} U_{ij}$. Для этого

• поместите курсор мыши в ячейку G28;

• выберите команду Среднее и выделите мышкой интервал G17: G27;

• Enter;

• протяжкой вправо ячейки G28 за правый нижний угол заполните интервал G28: I28.

	E	F	G	Н	1
26	Микродиориты	A ₁₀	10.1	9.55	9.01
27	Кузелиты (автометаморфизованные авгитовые порфириты)	A ₁₁	9.12	8.32	7.52
28	Групповые средние по уровням фактора В - U ср.гр.Вј		8.49	7.31	6.87

4) В ячейке **J28** определите генеральное среднее по всей выборке.

5) В ячейку **К17** впишите формулу вычисления взвешенных квадратов отклонений групповых средних по фактору A от общего среднего =(J17-\$J\$28)^2*3 (3 = q) и протяжкой вниз за правый нижний угол заполните интервал **К17:К27**.

	J	К	
	Групповые	Взвешенные квадраты	
14	средние по	отклонений групповых	
15	уровням	средних по фактору А от	
	фактора А	общего среднего:	
16	(U ср.гр.Аі)	(U ср.гр.Аі - U ср.общ.) ² - q	
17	4.52	=(J17-\$J\$28)^2*3	
18	7.28	0.23	
19	7.78	0.16	
20	7.50	0.01	
21	7.89	0.33	
22	8.29	1.63	
23	7.37	0.10	
24	7.61	0.01	
25	7.00	0.92	
26	9.55	11.98	
27	8.32	1.75	,
28	7.56 -	U ср.общ общее среднее	Э

6) В ячейку G29 впишите формулу вычисления взвешенных квадратов отклонений групповых средних по фактору B от общего среднего =(G28-\$J\$28)^2*11 (11= p) и протяжкой вправо за правый нижний угол заполните интервал G29:I29.

	E	F	G	Н	1
28	Групповые средние по уровням фактора В - U ср.гр.Вј		8.49	7.31	6.87
	Взвешенные квадраты отклонений групповых средних				
29	по фактору В от общего среднего: (U ср.гр.Вј - U ср.с	юбщ.) ² ∗	=(G28-\$J\$28)^2*11	0.651	5.233

7) В ячейку **М17** (Таблица 3) впишите формулу вычисления квадратов отклонений изучаемого признака от общего среднего =(**G17-\$J\$28**)², сделайте протяжку вправо **М17:О17** и вниз, чтобы выделенным оказался интервал **М17:О27** (вся таблица).

	М	N	0
12	Таблица 3		
13			
14	Квадрать изучаемого пр	ы отклоне ризнака о	ний т обшего
15	cpe	еднего:	
16	(U ij - l	Ј ср.общ.) ²
17	=(G17-\$J\$28)^2	57.08	3.44
18	0.11	0.02	1.09
19	0.39	0.32	0.26
20	0.25	0.00	0.47
21	1.20	0.99	1.20
22	2.18	1.48	0.23
23	0.46	0.00	1.43
24	0.34	0.00	0.23
25	0.32	0.31	2.81
26	6.48	3.98	2.12
27	2.45	0.58	0.00 🔻

8) В ячейку Q17 (Таблица 4) впишите формулу вычисления квадратов остаточных отклонений исходных значений от обоих групповых средних =(G17-\$J17-G\$28+\$J\$28)^2 и сделайте протяжку вправо Q17:S17 и вниз, чтобы выделенным оказался интервал Q17:S27 (вся таблица).

	Ρ	Q	R	S				
12		Таблица 4						
13								
14		Квадраты остаточных отклонений исходных значений от						
15		обеих труг	повых средних.	2				
16		(U ij - U ср.гр.Аі -	U ср.гр.Вј + U ср.об	щ.)²				
17		=(G17-\$J17-G\$28+\$J\$28)^2 _	18.26	3.51				
18		0.10	0.16	0.01				
19		0.29	0.34	0.00				
20		0.14	0.09	0.00				
21		0.03	0.82	0.54				
22		0.04	0.52	0.27				
23		0.01	0.15	0.10				
24		0.16	0.06	0.03				
25		0.03	0.06	0.19				
26		0.15	0.06	0.02				
27	1 0~	0.02	0.06	0.01				

Ссылка формата **\$J17** является относительной по строке и абсолютной по столбцу, т.е. при перемещении ячейки с формулой влево или вправо ссылка изменяться не будет, при перемещении выше или ниже будут изменяться строки. Ссылка формата **G\$28** является относительной по столбцу и абсолютной по строке, т.е. при перемещении по ячейкам выше или ниже, ссылка изменяться не будет. При движении влево или вправо будет изменяться столбец.

9) В ячейке G33 с помощью выражения =СУММ(М17:O27) вычислите сумму квадратов отклонений изучаемого признака от общего среднего SS_{сби}.

10) В ячейке G34 с помощью выражения =CУММ(K17:K27) вычислите сумму взвешенных квадратов отклонений групповых средних по фактору A от общего среднего SS_A .

	F	G
32		
33	SS _{общ}	92.2790
34	SS _A	44.8304
35	SS _B	15.4598
36	SS _{oct}	31.9888
37	SS oct	31.9888

11) В ячейке **G35** с помощью выражения =**CVMM(G29:I29)** вычислите сумму взвешенных квадратов отклонений групповых средних по фактору *B* от общего среднего *SS*_B.

12) В ячейке **G36** с помощью выражения =**CVMM**(Q17:S27) вычислите сумму квадратов остаточных отклонений *SS*_{ocm}.

13) В ячейке G37 с помощью выражения =G33-G34-G35 выполните проверочное

вычисление SS_{ост.}.

14) Рассчитайте дисперсии: общую $S_{oбщ.}^2 = \frac{SS_{oбщ.}}{N-1}$, факторные $S_A^2 = \frac{SS_A}{p-1}$, $S_B^2 = \frac{SS_B}{q-1}$ и остаточную $S_{ocm.}^2 = \frac{SS_{ocm.}}{N-m}$. Для этого

• в ячейку **F39** впишите выражение =**G33/32** для вычисления общей дисперсии;

• в ячейку **F40** впишите выражение =**G34/10** для вычисления дисперсии фактора *A*;

• в ячейку F41 впишите выражение =G35/2 для вычисления

дисперсии фактора В;

• в ячейку F42 впишите выражение =G36/20 для вычисления остаточной дисперсии.

1						
		E	F			
	38					
	39	Общая дисперсия S ² общ =	2.8837			
	40	Дисперсия фактора А S ² _A =	4.4830			
	41	Дисперсия фактора В S ² _В =	7.7299			
	42	Остаточная дисперсия S ² ост =	1.5994			

15) В ячейке **F50** с помощью выражения =**F40/F42** рассчитайте эмпирическое значения критерия Фишера по фактору $A F_A$.

16) В ячейке **F51** с помощью выражения =**F41/F42** рассчитайте эмпирическое значения критерия Фишера по фактору $B F_B$.

	E	F
48		
49	Эмпирические значения критерия Фиш	epa:
50	по фактору А:	2.802875
51	по фактору В:	4.83288

17) Оцените влияние степени метасоматического изменения и состава вмещающих пород на их петрофизические свойства, сравнив рассчитанные значения F_A и F_B с теоретическими значениями критерия Фишера F_{meop} .

Для принятого уровня значимости $\alpha = 0,05$ и степеней свободы $f_1 = 10$ и $f_2 = 20$ по фактору $A F_{meop} = 2,3$.

По фактору *В* для $f_1 = 2$ и $f_2 = 10 F_{meop} = 3,5$.

Расчетные критерии Фишера по обоим факторам *F*_{pacu}.> *F*_{meop}., следовательно нулевая гипотеза об отсутствии влияния изучаемых факторов на изменчивость признака отклоняется.

Вывод: Влияние факторов есть.

18) В ячейке G62 рассчитайте вклад в общую дисперсию учтенного фактора E_A в процентах с помощью выражения =G34*100/G33.

19) В ячейке G63 рассчитайте вклад в общую дисперсию учтенного фактора E_B с помощью выражения =G35*100/G33.

20) В ячейке G64 рассчитайте вклад в общую дисперсию неучтенных факторов E_{ocm} в процентах с помощью выражения =G36*100/G33.

21) В ячейке **G65** сосчитайте сумму $E_A + E_B + E_{ocm}$ – она должна составить 100 %.

	E	F	G
61			
62	Вклад в общую дисперсию фактора А:	$E_{A}(\%) =$	48.58
63	Вклад в общую дисперсию фактора В:	E _B (%) =	16.75
64	Вклад в общую дисперсию неучтенных	факторов:	34.67
65		Сумма	100

22) Отобразите графически характер зависимости изменения модуля Юнга от фактора *A*, воспользовавшись предложенным в задании шаблоном линейчатой диаграммы. Порядок построения аналогичен описанному в Задании 1, п. 9. В качестве **значений** следует выбрать групповые средние по уровням фактора *A* (диапазон ячеек **J17:J27**). В качестве **подписи оси** укажите диапазон **E17:E27**, содержащий названия горных пород.

23) Отобразите графически характер зависимости изменения модуля Юнга от фактора *B*, воспользовавшись предложенным в задании шаблоном графика. В качестве **значений** следует выбрать групповые средние по уровням фактора *B* (диапазон ячеек **G28:J28**). В качестве **подписи оси** укажите диапазон **G15:J15**, содержащий степени метасоматоза.

24) Отобразите графически вклад учтенных и неучтенных факторов в общую дисперсию, воспользовавшись предложенным в задании шаблоном круговой диаграммы. В качестве значений следует выбрать значения вкладов факторов в общую дисперсию, в % (диапазон ячеек G62:G64). В качестве подписи оси укажите диапазон E62:E64, содержащий названия факторов.

25) Проверьте полученные результаты с помощью встроенной в пакет Анализ данных программы Двухфакторный дисперсионный анализ без повторений. Для этого

• на вкладке Данные в группе Анализ нажмите кнопку Анализ данных и в диалоговом окне Анализ данных выберите режим Двухфакторный дисперсионный анализ без повторений;

• в одноименном диалоговом окне задайте установки:

<u>Входной интервал</u> – введите ссылку на ячейки, содержащие анализируемые данные **F16:I27**.

<u>Метки</u> – установите флажок в поле <u>М</u>етки;

<u>Уровень значимости α – 0.05.</u>

<u>Выходной интервал</u> – укажите в виде ссылки на левую верхнюю ячейку выходного диапазона, например **E73**.

• ОК.

Двухфакторный	дисперсион	ныі	йа <mark>?</mark> Х
Входные данные			ОК
В <u>х</u> одной интервал:	\$F\$16:\$I\$27		
✓ Метки			Отмена
<u>А</u> льфа: 0.05			<u>С</u> правка
Параметры вывода			
Выходной интервал:	Шаблон! \$ Е\$73	1	
С Новый рабочий <u>л</u> ист:			
О Новая рабочая <u>к</u> нига			

	E	F	G	Н		J	К
75	ИТОГИ	Счет	Сумма	Среднее	Дисперсия		
76	A1	3	13.55	4.516667	16.455833		
77	A2	3	21.83	7.276667	0.4937333		
78	A3	3	23.35	7.783333	0.4042333		
79	A4	3	22.49	7.496667	0.3570333		
80	A5	3	23.66	7.886667	1.5290333		
81	A6	3	24.88	8.293333	1.1210333		
82	A7	3	22.11	7.37	0.8911		
83	A8	3	22.83	7.61	0.2809		
84	A9	3	21	7	1.2544		
85	A10	3	28.66	9.553333	0.2970333		
86	A11	3	24.96	8.32	0.64		
87							
88	B1	11	93.37	8.488182	0.4683764		
89	B2	11	80.43	7.311818	6.4106164		
90	B3	11	75.52	6.865455	0.8029273		
91							
92							
93	Дисперсионный анализ						
94	Источник вариации	SS	df	MS	F	Р-Значение	F критическое
95	Строки	44.8304	10	4.483036	2.8028746	0.02386533	2.347877
96	Столбцы	15.4598	2	7.729912	4.8328802	0.019397471	3.492828
97	Погрешность	31.9888	20	1.599442			
98							
99	Итого	92.279	32				

Сравните рассчитанные по формулам значения средних на уровнях факторов A и B, дисперсий, критериев Фишера со значениями, рассчитанными автоматически.

С помощью программы Анализ данных оцените влияние двух факторов на остальные петрофизические свойства (модуль сдвига, объемная масса, эффективная пористость).

Двухфакторный дисперсионный анализ с повторениями

Задача 3. Для изучения условий формирования прибрежно-морской россыпи проведен отбор проб донных морских осадков по 9 профилям, ориентированным поперек берега. На каждом профиле пробы отбирались в 5 точках с глубин 4, 5, 6, 7 и 8 м, причем в каждой точке по глубине опробовались 3 слоя, т.е. отбиралось по 3 пробы. В каждой пробе определено содержание тяжелой фракции в целом и ценных минералов (ильменита, рутила и циркона). (О.И. Гуськов, П.И. Кушнарев, С.М. Таранов Математические методы в геологии. Сборник задач. М., Недра, 1991, с. 70).

Известно, что накопление тяжелых минералов в прибрежной зоне происходит под действием как вдольберегового течения, так и или под влиянием возвратно-поступательного движения волн в поперечном относительно берега направлении. Поэтому содержания минералов могут меняться, во-первых, в зависимости от положения профиля вдоль берега, т.е. от вдольберегового течения (фактор A) и, во-вторых, от глубины моря, т.е. от положения пробы относительно берега (фактор B).

В качестве анализируемого признака в практикуме рассматриваются содержания тяжелой фракции в целом (Таблица 1).

Задание 3. Оценить условия концентрации тяжелых ценных минералов в морских отложениях с помощью двухфакторного дисперсионного анализа с повторениями.

Двухфакторный дисперсионный анализ с повторениями заключается в разделении общей дисперсии $S_{oбщ}^2$ на четыре компоненты: факторные дисперсии 1) S_A^2 , 2) S_B^2 , 3) смешанную дисперсию S_{AB}^2 и 4) остаточную дисперсию S_{ocm}^2 . После этого проверяется гипотеза о влиянии факторов с помощью *F*-критерия Фишера.

Порядок выполнения двухфакторного дисперсионного анализа с повторениями

1) Скопируйте в **Таблицу 2** содержания тяжелой фракции из графы **D Таблицы 1** с учетом опробования 3 слоев на каждой из глубин, которые для этих глубин являются повторными.

	F	G	н	1		К		м
11	г Таблица 2	6	п	1	J	N	L	m
12	Группирование исходных данных для двухфакт	горного ли	сперсионн	ого анаг	иза с п	OBTODA	ниями	
13		opiloro Al	enopeneni	or or array		ouropo		
14				Содерж	ание тя	желой	фракц	AR. %
15		Vnonuu			Глуби	на мор	ям	,
16		уровни	Ναπροδιι	4 M	5 M	6м	7 M	8 M
17	и= профиля	Δ	№ прооы		0.111	0.00		0 10
18					Уровни	і факто	pa B	
19				B1	B2	B3	B4	B5
20	1	A1	1	1.5	2.1	6	6.6	1.8
21			2	1.7	2	5.3	2.3	2.4
22		-	3	1.6	2.05	5.65	4.45	2.1
23	Групповые средние по ячейкам А ₁ Вј							
24	2	A2	1	1.8	6	11.7	3.4	10
25			2	1.4	4.2	8.2	3.5	9.2
26			3	1.6	5.1	9.95	3.45	9.6
27	Групповые средние по ячейкам А ₂ Вј							
28	3	A3	1	1.8	0.5	7.9	8	0.2
29		1	2	1.9	0.7	9	7.3	0.2
30			3	1.85	0.6	8.45	7.65	0.2
31	Групповые средние по ячейкам Аз Вј							
32	4	A4	1	1.6	0.8	0.1	0	0
33		-	2	1.9	0.5	0.1	0	0
34			3	1.75	0.65	0.1	0	0
35	Групповые средние по ячейкам А4 Вј		2.2					
36	5	A5	1	8.8	4.9	3.3	1.09	0.5
37			2	5.8	3.1	4.8	2.55	0.01
38			3	7.3	4	4.05	1.82	0.255
39	Групповые средние по ячейкам А ₅ Вј							
40	6	A6	1	2.1	1	1.3	0.3	0
41			2	1	1.1	1.2	0.2	0
42			3	1.55	1.05	1.25	0.25	0
43	Групповые средние по ячейкам А ₈ Вј							
44	7	A7	1	4	1.9	0.9	1	1.4
45			2	5.5	2.3	0.6	1	1.5
46			3	4.75	2.1	0.75	1	1.45
47	Групповые средние по ячейкам А7 Вј							
48	8	A8	1	0.9	1.9	2.3	1.6	4.6
49			2	1.6	2.2	3.6	1.8	5.4
50			3	1.25	2.05	2.95	1.7	5
51	Групповые средние по ячейкам А ₈ Вј	÷						2
52	9	A9	1	2.2	0.6	2.3	2.3	5.5
53		·	2	0.9	0.8	4.5	10	5.4
54		· · · · · · · · · · · · · · · · · · ·	3	1.55	0.7	3.4	6.15	5.45
55	Группорые средние по знейкам А. Ві							

2) Определите средние значения признака в каждой ячейке по

формуле $\widehat{U}_{A_iB_j} = \frac{1}{n} \cdot \sum_{k=1}^n U_{ijk}$.

Для этого

• поместите курсор мыши в ячейку I23;

• выберите команду Среднее и выделите мышкой интервал I20: I22;

• Enter;

	G	Н	1	J	K	L	М		
15	Уровни			Глуби	на мор	я, м			
16	фактора	№ пробы	4 м	5м	6м	7м	8 м		
17	Δ								
18	~		Уровни фактора В						
19			B1	B2	B3	B4	B5		
20	A1	1	1.5	2.1	6	6.6	1.8		
21		2	1.7	2	5.3	2.3	2.4		
22		3	1.6	2.05	5.65	4.45	2.1		
23		=CP3HAY(I20:122)							

• протяжкой вправо ячейки I23 за правый нижний угол заполните интервал I23:M23;

• Enter;

			<u> </u>					
	G	Н	- I	J	K	L	М	
19			B1	B2	B3	B4	B5	l
20	A1	1	1.5	2.1	6	6.6	1.8	Ĺ
21		2	1.7	2	5.3	2.3	2.4	Ē
22		3	1.6	2.05	5.65	4.45	2.1	Ĺ
23			1.6	2.05	5.65	4.45	2.1	

• повторите описанные операции последовательно на всех уровнях фактора *A* (в ячейках **I27**, **I31**, **I35**, **I39**, **I43**, **I47**, **I51**, **I55**).

4	G	Н	1	J	K	L	Μ
19			B1	B2	B3	B4	B5
20	A1	1	1.5	2.1	6	6.6	1.8
21		2	1.7	2	5.3	2.3	2.4
22		3	1.6	2.05	5.65	4.45	2.1
23			1.6	2.05 5.6		4.45	2.1
24	A2	1	1.8	6	11.7	3.4	10
25		2	1.4	4.2	8.2	3.5	9.2
26		3	1.6	5.1	9.95	3.45	9.6
27			1.6	5.1	9.95	3.45	9.6
28	A3	1	1.8	0.5	7.9	8	0.2
29		2	1.9	0.7	9	7.3	0.2
30		3	1.85	0.6	8.45	7.65	0.2
31			1.85	0.6	8.45	7.65	0.2
32	A4	1	1.6	0.8	0.1	0	0
33		2	1.9	0.5	0.1	0	0
34		3	1.75	0.65	0.1	0	0
35			1.75	0.65	0.1	0	0
36	A5	1	8.8	4.9	3.3	1.09	0.5
37		2	5.8	3.1	4.8	2.55	0.01
38		3	7.3	4	4.05	1.82	0.26
39			7.3	4	4.05	1.82	0.26
40	A6	1	2.1	1	1.3	0.3	0
41		2	1	1.1	1.2	0.2	0
42		3	1.55	1.05	1.25	0.25	0
43			1.55	1.05	1.25	0.25	0
44	A7	1	4	1.9	0.9	1	1.4
45		2	5.5	2.3	0.6	1	1.5
46		3	4.75	2.1	0.75	1	1.45
47			4.75	2.1	0.75	1	1.45
48	A8	1	0.9	1.9	2.3	1.6	4.6
49		2	1.6	2.2	3.6	1.8	5.4
50		3	1.25	2.05	2.95	1.7	5
51			1.25	2.05	2.95	1.7	5
52	A9	1	2.2	0.6	2.3	2.3	5.5
53		2	0.9	0.8	4.5	10	5.4
54		3	1.55	0.7	3.4	6.15	5.45
55			1.55	0.7	3.4	6.15	5.45

3) Вычислите групповые средние по уровням фактора А

$$\widehat{U}_{A_{i}} = \frac{1}{q \cdot n} \cdot \sum_{j=1}^{q} \sum_{k=1}^{n} U_{ijk} = \frac{1}{q} \cdot \sum_{j=1}^{q} \widehat{U}_{A_{i}B_{j}}.$$

Для этого

• поместите курсор мыши в ячейку N23;

• выберите команду Среднее и выделите мышкой интервал I23:M23;

	G	Н	I	J	К	L	М	N	
14			Содерж	ание тя	желой	фракц	ия, %	Групповые	
15	Уровни			Глуби		средние по			
16	фактора	№ пробы	4 м	5м	6м	7м	8м	уровням	C
17	Δ							фактора А	
18	~			Уровни			(U		
19			B1	B2	B3	B4	B5	(0 cp.(p.A))	
20	A1	1	1.5	2.1	6	6.6	1.8		
21		2	1.7	2	5.3	2.3	2.4		
22		3	1.6	2.05	5.65	4.45	2.1		
23			1.6	2.05	5.65	4.45	=C	РЗНАЧ(<mark>I23:М</mark>	23)

• Enter;

• повторите операцию вычисления среднего последовательно в ячейках N27, N31, N35, N39, N43, N47, N51, N55.

4	G	Н	1	J	K	L	М	N
20	A1	1	1.5	2.1	6	6.6	1.8	
21		2	1.7	2	5.3	2.3	2.4	
22		3	1.6	2.05	5.65	4.45	2.1	
23			1.6	2.05	5.65	4.45	2.1	3.17
24	A2	1	1.8	6	11.7	3.4	10	
25		2	1.4	4.2	8.2	3.5	9.2	
26		3	1.6	5.1	9.95	3.45	9.6	
27			1.6	5.1	9.95	3.45	9.6	5.94
28	A3	1	1.8	0.5	7.9	8	0.2	
29		2	1.9	0.7	9	7.3	0.2	
30		3	1.85	0.6	8.45	7.65	0.2	
31			1.85	0.6	8.45	7.65	0.2	3.75
32	A4	1	1.6	0.8	0.1	0	0	
33		2	1.9	0.5	0.1	0	0	
34		3	1.75	0.65	0.1	0	0	
35			1.75	0.65	0.1	0	0	0.5
36	A5	1	8.8	4.9	3.3	1.09	0.5	
37		2	5.8	3.1	4.8	2.55	0.01	
38		3	7.3	4	4.05	1.82	0.26	
39			7.3	4	4.05	1.82	0.26	3.485
40	A6	1	2.1	1	1.3	0.3	0	
41		2	1	1.1	1.2	0.2	0	
42		3	1.55	1.05	1.25	0.25	0	
43			1.55	1.05	1.25	0.25	0	0.82
44	A7	1	4	1.9	0.9	1	1.4	
45		2	5.5	2.3	0.6	1	1.5	
46		3	4.75	2.1	0.75	1	1.45	
47			4.75	2.1	0.75	1	1.45	2.01
48	A8	1	0.9	1.9	2.3	1.6	4.6	
49		2	1.6	2.2	3.6	1.8	5.4	
50		3	1.25	2.05	2.95	1.7	5	
51			1.25	2.05	2.95	1.7	5	2.59
52	A9	1	2.2	0.6	2.3	2.3	5.5	
53		2	0.9	0.8	4.5	10	5.4	
54		3	1.55	0.7	3.4	6.15	5.45	
55			1.55	0.7	3.4	6.15	5.45	3.45

4) Вычислите групповые средние по уровням фактора В

$$\widehat{U}_{B_j} = \frac{1}{p \cdot n} \cdot \sum_{i=1}^p \sum_{k=1}^n U_{ijk} = \frac{1}{p} \cdot \sum_{i=1}^p \widehat{U}_{A_i B_j}$$

Для этого

• поместите курсор мыши в ячейку I57;

• выберите команду Среднее и выделите мышкой интервалы I20:I22 I24:I26 I28:I30 I32:I34 I36:I38 I40:I42 I44:I46 I48:I50 I52:I54, воспользовавшись клавишей Ctrl;

• Enter;

• протяжкой вправо ячейки I57 за правый нижний угол заполните интервал I57:M57;

• Enter.

	I	J	K	L	М	N	0
56							
57	2.578	2.033	4.061	2.941	2.673		U ср.общ общее среднеє

5) В ячейке **N57** определите генеральное среднее по всей выборке. Его можно получить из всей выборки исходных данных, из средних по уровням фактора A, или из средних по уровням фактора B, так как количество замеров на всех уровнях одинаково.

		J	K	L	М	N	0
56							
57	2.578	2.033	4.061	2.941	2.673	=CP3HA4(I57:M57)	U ср.общ общее среднее

6) В ячейку **О23** впишите формулу вычисления взвешенных квадратов отклонений групповых средних по фактору A от общего среднего =3*5*(N23-\$N\$57)^2 (n=3, q=5) и протяжкой вниз за правый нижний угол заполните интервал **О23:О55**. Затем удалите лишние вычисления из интервалов **О24:О26**; **О28:О30**; **О32:О34**; **О36:О38**; **О40:О42**; **О44:О46**; **О48:О50**; **О52:О54** (воспользуйтесь при выделении интервалов клавишей **Ctrl**).

			e server post						
	G	Н		J	K	L	М	N	0
12	рного дис	персионно	ого анализ	а с повт	орения				
13								q - количеств	о уровней фактора В (количест
14			Содержан	ние тяж	елой ф	ракция	a, %	Группорые	Взвешенные квадраты
15	Уровни			Глубин	а моря	, М		средние по	отклонений групповых
16	фактора	№ пробы	4 м	5м	6м	7м	8м	уровням	средних по фактору А от
17	Λ	ие прооы						фактора А	общего среднего:
18	~			Уровни	фактор	ba B			
19			B1	B2	B3	B4	B5	(U cp.rp.AI)	(U ср.гр.Аі - U ср.общ.) ⁻ * q * n
20	A1	1	1.5	2.1	6	6.6	1.8		
21		2	1.7	2	5.3	2.3	2.4		
22		3	1.6	2.05	5.65	4.45	2.1		
23			1.6	2.05	5.65	4.45	2.1	3.17	=3*5*(N23-\$N\$57)^2

	N	0
14	Бруппорию	Варенненные крадорты
15	средние по	отклонений срудовых
16	уровням	средних по фактору А от
17	фактора А	общего среднего:
18	(U cp rp Ai)	$(_{cn} cn A_i - _{cn} A_i)^2 * a * n$
19	(0 00.00.0)	(о ср. р. А - о ср. оощ.) с п
20		
21		
22		
23	3.17	1.467449074
24		122.4557824
25		122.4557824
26		122.4557824
27	5.94	142.5527824
28		122.4557824
29		122.4557824
30		122.4557824
31	3.75	11.95578241
32		122.4557824
33		122.4557824
34		122.4557824
35	0.5	83.34744907
36		122.4557824
37		122.4557824
38		122.4557824
39	3.485	5.911574074
40		122.4557824
41		122.4557824
42		122.4557824
43	0.82	62.25411574
44		122.4557824
45		122.4557824
46		122.4557824
47	2.01	10.76678241
48		122.4557824
49		122.4557824
50		122.4557824
51	2.59	1.071115741
52		122.4557824
53		122.4557824
54		122.4557824
55	3.45	5.270782407

	Ν	0
14	Групповые	Взвешенные квадраты
15	средние по	отклонений групповых
16	уровням	средних по фактору А от
17	фактора А	общего среднего:
18	(U cp.rp.Ai)	(U ср.гр.Аі - U ср.обш.) ² * а * n
19		
20		
22		
23	3.17	1.467449074
24		
25		
26		
27	5.94	142.5527824
28		
29		
30		
31	3.75	11.95578241
32		
33		
34		
35	0.5	83.34744907
36		
37		
38		
39	3.485	5.911574074
40		
41		
42		
43	0.82	62.25411574
44		
45		
46		
47	2.01	10.76678241
48		
49		
50	2.50	1.071115741
51	2.59	1.071115741
52		
53		
54	0.45	5 070700407
EE	2.45	6.970799407

7) В ячейку **I58** впишите формулу вычисления взвешенных квадратов отклонений групповых средних по фактору *B* от общего среднего $=3*9*(I57-\$N\$57)^2$ (p=9) и протяжкой вправо за правый нижний угол заполните интервал **I58:M58**.

	ITTP ▼ (* X ✓ f _x =3*9*(157-\$N\$57)^2								
	F	G	Н	l I	J	K	L	М	N
55	Групповые средние по ячейкам А ₉ Вј			1.55	0.7	3.4	6.15	5.45	3.45
56									
57	Групповые средние по уровням фактора В			2.578	2.033	4.061	2.941	2.673	2.8572
	Взвешенные квадраты отклонений групповых с фактору В от общего среднего: (U со го Bi - U	редних по I ср. общ.) ² •	n*n	=3*9*(157_\$N\\$57\^2					q - количеств

	F	G	Н	1	J	K	L	М	N
57	Групповые средние по уровням фактора В			2.578	2.033	4.061	2.941	2.673	2.8572
	Взвешенные квадраты отклонений групповых	средних г	10	2 1084	18.3	30 1	0 19	0 92	а - количество
58	фактору В от общего среднего: (U ср.гр.Вј -	U ср.общ	.) ² ∗ p * n	2.1004	10.0	00.1	0.10	0.52	q - 1011/1400100

8) В ячейку Q20 (Таблица 3) впишите формулу вычисления квадратов отклонений изучаемого признака от общего среднего =(I20-\$N\$57)^2, сделайте протяжку вправо Q20:U20 и вниз, чтобы выделенным оказался интервал Q20:U54 (вся таблица).

	Ρ	Q	R	S	Т	U		
12		Таблица 3						
13	13 во столбцов), q = 5							
14		Квадраты отклон	ений исх	одных зн	ачений пр	ризнака		
15		o	т общего	среднего):			
16			(U ij - U d	ср.общ.) ²				
17		4 м	5м	6м	7м	8 м		
18			Уровни ф	рактора В				
19		B1	B2	B3	B4	B5		
20		=(I20-\$N\$57)^2						

	Q	R	S	Т	U
12	Таблица	3			
13	цов), q = !	5			
14	Квадра	ты отклон	нений исх	одных зн	ачений
15		ризнака с	поощего	среднег 	0.
16	A M	(U IJ	- U CP.00	щ.) 7 м	8 M
18	4 10	Уров	зни факто	pa B	U M
19	B1	B2	B3	B4	B5
20	1.84	0.57	9.88	14.01	1.12
21	1.34	0.73	5.97	0.31	0.21
22	1.58	0.65	7.80	2.54	0.57
23	1.58	0.65	7.80	2.54	0.57
24	1.12	9.88	78.19	0.29	51.02
25	2.12	1.80	28.55	0.41	40.23
26	1.58	5.03	50.31	0.35	45.47
27	1.58	5.03	50.31	0.35	45.47
28	1.12	5.56	25.43	26.45	7.06
29	0.92	4.65	37.73	19.74	7.06
30	1.01	5.10	31.28	22.97	7.06
31	1.01	5.10	31.28	22.97	7.06
32	1.58	4.23	7.60	8.16	8.16
33	0.92	5.56	7.60	8.16	8.16
34	1.23	4.87	7.60	8.16	8.16
35	1.23	4.87	7.60	8.16	8.16
36	35.32	4.17	0.20	3.12	5.56
37	8.66	0.06	3.77	0.09	8.11
38	19.74	1.31	1.42	1.08	6.77
39	19.74	1.31	1.42	1.08	6.77
40	0.57	3.45	2.42	6.54	8.16
41	3.45	3.09	2.75	7.06	8.16
42	1.71	3.27	2.58	6.80	8.16
43	1.71	3.27	2.58	6.80	8.16
44	1.31	0.92	3.83	3.45	2.12
45	6.98	0.31	5.10	3.45	1.84
46	3.58	0.57	4.44	3.45	1.98
47	3.58	0.57	4.44	3.45	1.98
48	3.83	0.92	0.31	1.58	3.04
49	1.58	0.43	0.55	1.12	6.47
50	2.58	0.65	0.01	1.34	4.59
51	2.58	0.65	0.01	1.34	4.59
52	0.43	5.10	0.31	0.31	6.98
53	3.83	4.23	2.70	51.02	6.47
54	1.71	4.65	0.29	10.84	6.72

9) Выделите интервалы Q23:U23, Q27:U27, Q31:U31, Q35:U35, Q39:U39, Q43:U43, Q47:U47, Q51:U51, воспользовавшись клавишей

10	Р	Q	R	S	T Da B	U
10		B1	- 5 por	ва	вл	B5
20		1.84	0.57	9.88	14 01	1 12
21		1.34	0.73	5.97	0.31	0.21
22		1.58	0.65	7.80	2.54	0.57
23						
24		1.12	9.88	78.19	0.29	51.02
25		2.12	1.80	28.55	0.41	40.23
26		1.58	5.03	50.31	0.35	45.47
27						
28		1.12	5.56	25.43	26.45	7.06
29		0.92	4.65	37.73	19.74	7.06
30		1.01	5.10	31.28	22.97	7.06
31						
32		1.58	4.23	7.60	8.16	8.16
33		0.92	5.56	7.60	8.16	8.16
34		1.23	4.87	7.60	8.16	8.16
35						
36		35.32	4.17	0.20	3.12	5.56
37		8.66	0.06	3.77	0.09	8.11
38		19.74	1.31	1.42	1.08	6.77
39						
40		0.57	3.45	2.42	6.54	8.16
41		3.45	3.09	2.75	7.06	8.16
42		1.71	3.27	2.58	6.80	8.16
43						
44		1.31	0.92	3.83	3.45	2.12
45		6.98	0.31	5.10	3.45	1.84
46		3.58	0.57	4.44	3.45	1.98
47						
48		3.83	0.92	0.31	1.58	3.04
49		1.58	0.43	0.55	1.12	6.47
50		2.58	0.65	0.01	1.34	4.59
51						
52		0.43	5.10	0.31	0.31	6.98
53		3.83	4.23	2.70	51.02	6.47
54		1.71	4.65	0.29	10.84	6.72

Ctrl, и удалите их содержимое с помощью клавиши Delete.

10) В ячейку **W23** (Таблица 4) впишите формулу вычисления взвешенных квадратов смешанных отклонений исходных значений признака от обоих групповых средних =3*(I23-\$N23-I\$57+\$N\$57)^2 и сделайте протяжку вправо и вниз, чтобы выделенным оказался интервал W23:AA55.

	V	W	Х	Y	Z	AA
12		Таблица 4				
13						
14		Взвешенные квадраты сме	шанных от	клонений и	сходных зн	ачений
15		признака от с	обеих групг	товых сред	них:	
16		(U ср.гр.АіВј - U ср.г	p.Ai - U cp.	гр.Вј + U ср	о.общ.) ² * n	
17		4 M	5м	6м	7м	8 м
18		Ур	овни факто	pa B		
19		B1	B2	B3	B4	B5
20						
21						
22						
23		=3*(I23-\$N23-I\$57+\$N\$57)^2				

11) Очистите интервалы **W24:AA26**, **W28:AA30**, **W32:AA34**, **W36:AA38**, **W40:AA42**, **W44:AA46**, **W48:AA50**, **W52:AA54** от лишних вычислений (см. п. 9).

	U	V	W	Х	Y	Z	AA	AB	AC
17	8м		4м	5м	6м	7м	8м		4 M
18	DC		D1	Уровн	и фактора і	5	DC		
19	1 12		BI	BZ	B3	B4	85		81
20	0.21							-	<u> </u>
22	0.57								<u> </u>
23			4.997	0.263	4.885	4.292	2.353		
24	51.02								
25	40.23								
26	45.47								
27			49.464	0.001	23.623	19.875	44.339		
28	7.06								
29	7.06								
30	7.06								
31			7.879	16.232	36.668	43.688	33.981		
32	8.16								
33	8.16								
34	8.16								
35			7.018	2.845	7.717	1.023	0.299		
36	5.56								
37	8.11								
38	6.77								
39			50.293	5.378	1.225	9.176	27.826		
40	8.16								
41	8.16								
42	8.16								
43			3.057	3.332	1.797	1.283	1.212		
44	2.12								
45	1.84								
46	1.98								
47			27.351	2.506	18.212	3.590	0.423		
48	3.04								
49	6.47								
50	4.59								
51			3.374	0.242	2.136	2.845	20.193		
52	6.98								
53	6.47								
54	6.72								
55			7.879	11.130	4.717	20.532	14.315		

12) В ячейку **AC20** (Таблица 5) впишите формулу вычисления квадратов остаточных отклонений исходных значений признака от средних по ячейкам =(**I20-I\$23**)², сделайте протяжку вправо и вниз, чтобы выделенным оказался интервал **AC20:AG22**.

	10	AD	A E	٨E	AC
	AC	AD	AL	AF	AG
12	Таблица 5				
13					
14	Квадраты ос	таточных	отклоне	ний исхо,	дных
15	значений пр	оизнака о	т средне	го по яче	йке:
16		(U ij - U	Гр.АіВј) ²		
17	4 M	5м	6м	7м	8 м
18		Уровни о	фактора Е	3	
19	B1	B2	B3	B4	B5
20	$=(120-1$23)^{2}$				

	AC	AD	AE	AF	AG
19	B1	B2	B3	B4	B5
20	0.0100	0.0025	0.1225	4.6225	0.0900
21	0.0100	0.0025	0.1225	4.6225	0.0900
22	0.0000	0.0000	0.0000	0.0000	0.0000

13) В ячейку AC24 впишите формулу вычисления квадратов остаточных отклонений исходных значений признака от средних по ячейкам =(I24-I\$27)^2, сделайте протяжку вправо и вниз, чтобы выделенным оказался интервал AC24:AG26.

	AC	AD	AE	AF	AG
19	B1	B2	B3	B4	B5
20	0.0100	0.0025	0.1225	4.6225	0.0900
21	0.0100	0.0025	0.1225	4.6225	0.0900
22	0.0000	0.0000	0.0000	0.0000	0.0000
23					
24	=(124-1\$27)^2				
25					
26					

	AC	AD	AE	AF	AG
19	B1	B2	B3	B4	B5
20	0.0100	0.0025	0.1225	4.6225	0.0900
21	0.0100	0.0025	0.1225	4.6225	0.0900
22	0.0000	0.0000	0.0000	0.0000	0.0000
23					
24	0.0400	0.8100	3.0625	0.0025	0.1600
25	0.0400	0.8100	3.0625	0.0025	0.1600
26	0.0000	0.0000	0.0000	0.0000	0.0000

14) Повторите вычисления в ячейках AC28, AC32, AC36, AC40, AC44, AC48, AC52, меняя средние в ячейках на каждом уровне.

18	AB	AC	AD VDOB	АЕ ни факто	AF Da B	AG
19		B1	B2	B3	B4	B5
20		0.0100	0.0025	0.1225	4.6225	0.0900
21		0.0100	0.0025	0.1225	4.6225	0.0900
22		0.0000	0.0000	0.0000	0.0000	0.0000
23						
24		0.0400	0.8100	3.0625	0.0025	0.1600
25		0.0400	0.8100	3.0625	0.0025	0.1600
26		0.0000	0.0000	0.0000	0.0000	0.0000
27						
28		0.0025	0.0100	0.3025	0.1225	0.0000
29		0.0025	0.0100	0.3025	0.1225	0.0000
30		0.0000	0.0000	0.0000	0.0000	0.0000
31						
32		0.0225	0.0225	2E-34	0	0
33		0.0225	0.0225	2E-34	0	0
34		0	0	2E-34	0	0
35						
36		2.25	0.81	0.5625	0.5329	0.06
37		2.25	0.81	0.5625	0.5329	0.06
38		7.9E-31	0	0	0	0
39						
40		0.3025	0.0025	0.0025	0.0025	0
41		0.3025	0.0025	0.0025	0.0025	0
42		0	0	0	0	0
43						
44		0.5625	0.04	0.0225	0	0.0025
45		0.5625	0.04	0.0225	0	0.0025
46		0	2E-31	0	0	0
47						
48		0.1225	0.0225	0.4225	0.01	0.16
49		0.1225	0.0225	0.4225	0.01	0.16
50		0	0	2E-31	5E-32	0
51						
52		0.4225	0.01	1.21	14.823	0.0025
53		0.4225	0.01	1.21	14.823	0.0025
54		0	1E-32	0	8E-31	0

15) Вычислите суммы квадратов общих $SS_{oбщ.}$, факторных SS_A и SS_B , смешанных SS_{AB} и остаточных $SS_{ocm.}$ отклонений значений признака от своего среднего. Для этого впишите соответствующие выражения:

• в ячейку H61: =CYMM(Q20:U54);

- в ячейку H62: =CYMM(O23:O55);
- в ячейку H63: =CУMM(I58:M58);

• в ячейку H64: =CУММ(W23:AA55);

• в ячейку H65: =CVMM(AC20:AG54).

16) В ячейке **Н66** вычислите проверочную сумму *SS_{ocm}* с помощью выражения **=H61-H62-H63-H64**

	G	Н	1	J	К	L	М	N	
61	SS общ	=СУММ(Q20:U54)	Сумма да	нных та	блицы	3		SS общ = сум	ма (U ij - l
62	SS A	=СУММ(023:055)	<mark>умма да</mark>	нных ст	олбца (C		SS _A = сумма	((U ср.гр. <i>і</i>
63	SS B	=CYMM(I58:M58)	умма да	нных ст	роки 58	5		SS _в = сумма	((U ср.гр.ł
64	SS AB	=CYMM(W23:AA55)	ма да	нных та	блицы	4		SS _{AB} = сумма	a ((U ij - U
65	SS oct	=CYMM(AC20:AG54)	има да	нных та	блицы	5		SS ост = суми	иа (U ij - U
66	SS oct	=H61-H62-H63-H64	ровероч	ная сум	има SS	ост =	SS обц	ι - SS A - SS B	- SS AB

1	G	Н	1	J	К	L	М	N	
61	SS общ	1004.27	Сумма да	нных та	блицы	3		SS общ = сум	іма (U іј -
62	SS A	324.598	Сумма да	нных ст	олбца	0		SS _A = сумма	((U ср.гр.,
63	SS B	60.677	Сумма да	нных ст	роки 5	8		SS _в = сумма	((U ср.гр.
64	SS AB	555.466	Сумма да	нных та	блицы	4		SS _{AB} = сумма	a ((U ij - U
65	SS OCT	63.5259	Сумма да	нных та	блицы	5		SS ост = суми	иа (U ij - L
66	SS OCT	63.5258	Провероч	ная сум	мa SS	ост =	SS обц	ų - SS A - SS B	- SS AB

17) Вычислите дисперсии: общую $S^2_{o \delta u \mu}$, факторные S^2_A и S^2_B , смешанную S^2_{AB} и остаточную $S^2_{o c m}$ по формулам:

$$S_{o \delta u \mu}^{2} = \frac{SS_{o \delta u \mu}}{N-1}, \qquad S_{A}^{2} = \frac{SS_{A}}{p-1}, \qquad S_{B}^{2} = \frac{SS_{B}}{q-1},$$
$$S_{AB}^{2} = \frac{SS_{AB}}{(p-1) \cdot (q-1)}, \qquad S_{o c m}^{2} = \frac{SS_{o c m}}{p \cdot q \cdot (n-1)}$$

Для этого впишите соответствующие выражения:

- в ячейку G68: =H61/(3*9*5-1);
- в ячейку G69: =H62/(9-1);
- в ячейку G70: =H63/(5-1);
- в ячейку G71: =H64/((9-1)*(5-1));
- в ячейку G72: =H65/(9*5*(3-1)).

	F	G
67		
68	Общая дисперсия S ² общ =	H61/(9*5*3-1)
69	Дисперсия фактора А S ² _A =	H62/(9-1)
70	Дисперсия фактора В S ² _B =	H63/(5-1)
71	Смешанная дисперсия факторов А и В S ² _{AB} =	H64/((9-1)*(5-1))
72	Остаточная дисперсия S ² ост =	H65/(9*5*(3-1))

	F	G
67		
68	Общая дисперсия S ² общ =	7.4945
69	Дисперсия фактора А S ² _A =	40.575
70	Дисперсия фактора В S ² _B =	15.169
71	Смешанная дисперсия факторов А и В S ² _{AB} =	17.358
72	Остаточная дисперсия S ² ост =	0.7058

18) Определите значения F-критериев Фишера по каждому фактору в отдельности F_A , F_B и их взаимодействию F_{AB} по формулам:

$$F_A = \frac{S_A^2}{S_{ocm.}^2}, \qquad F_B = \frac{S_B^2}{S_{ocm.}^2}, \qquad F_{AB} = \frac{S_{AB}^2}{S_{ocm.}^2}.$$

Для этого впишите соответствующие выражения:

- в ячейку G80: =G69/G72;
- в ячейку G81: =G70/G72;
- в ячейку G82: =G71/G72.

	F	G
79	Эмпирические значения критерия Фишера:	
80	по фактору А:	G69/G72
81	по фактору В:	G70/G72
82	по совместному влиянию факторов А и В:	G71/G72

19) Выберите из приведенной ниже Таблицы значений Fкритерия Фишера при уровне значимости α =0.05 теоретические значения F_{теор}. Для этого

• в ячейках **G85–H87** сосчитайте количество степеней свободы по каждому фактору в отдельности и их взаимодействию с помощью выражений:

- по фактору A: $f_1 = p 1$ и $f_2 = p \cdot q \cdot (n 1)$,
- по фактору *B* : $f_1 = q 1$ и $f_2 = p \cdot q \cdot (n 1)$,

– по взаимодействию факторов AB: $f_1 = (p-1) \cdot (q-1)$ и $f_2 = p \cdot q \cdot (n-1);$

	F	G	Н	
84	Числа степеней свободы			
85	по фактору A: $f_1 = p-1$ $f_2 = p^*q(n-1)$	8	90	
86	по фактору В: f ₁ = q-1 f ₂ = p*q(n-1)	4	90	
87	по совместному влиянию факторов А и В	32	90	
88	$f_1 = (p-1)(q-1)$ $f_2 = p^*q(n-1)$			

• в ячейки **J80:J82** впишите значений F-критерия Фишера F_{meop} , соответствующие пересечениям рассчитанных степеней свободы (F_{meop} . по *AB* возьмите пропорционально между $f_1 = 24$ и $f_1 = 50$);

• сравните $F_{pacy.}$ с $F_{meop.}$ и сделайте вывод о том принимается или отклоняется нулевая гипотеза об отсутствии влияния каждого из изучаемых факторов (степени метасоматического изменения, состава вмещающих пород и взаимодействия обоих факторов) на их петрофизические свойства.

Таблица значений F-критерия Фишера при уровне значимости

α =0.05

f ₁	1	2	3	4	5	6	8	12	24	50	8
f ₂											
1	161.4	199.5	215.7	224.5	230.1	233.9	238.8	243.9	249.0	251.8	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.47	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.84	8.74	8.64	8.58	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.70	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.44	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.75	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.32	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	3.03	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.80	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.64	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	2.95	2.79	2.61	2.50	2.40
12	4.75	3.88	3.49	3.26	3.11	3.00	2.85	2.69	2.50	2.40	2.30
13	4.67	3.80	3.41	3.18	3.02	2.92	2.77	2.60	2.42	2.32	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.53	2.35	2.24	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.64	2.48	2.29	2.18	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.42	2.24	2.13	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.55	2.38	2.19	2.08	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	2.15	2.04	1.92

f₁	1	2	3	4	5	6	8	12	24	50	∞.
f ₂											
19	4.38	3.52	3.13	2.90	2.74	2.63	2.48	2.31	2.11	2.00	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.45	2.28	2.08	1.96	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.42	2.25	2.05	1.83	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.40	2.23	2.03	1.91	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.38	2.20	2.00	1.88	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.36	2.18	1.98	1.86	1.73
25	4.24	3.38	2.99	2.76	2.60	2.49	2.34	2.16	1.96	1.84	1.71
26	4.22	3.37	2.98	2.74	2.59	2.47	2.32	2.15	1.95	1.82	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.30	2.13	1.93	1.80	1.67
28	4.20	3.34	2.95	2.71	2.56	2.44	2.29	2.12	1.91	1.78	1.65
29	4.18	3.33	2.93	2.70	2.54	2.43	2.28	2.10	1.90	1.77	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.27	2.09	1.89	1.76	1.62
35	4.12	3.26	2.87	2.64	2.48	2.37	2.22	2.04	1.83	1.70	1.57
40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2.00	1.79	1.66	1.51
45	4.06	3.21	2.81	2.58	2.42	2.31	2.15	1.97	1.76	1.63	1.48
50	4.03	3.18	2.79	2.56	2.40	2.29	2.13	1.95	1.74	1.60	1.44
60	4.00	3.15	2.76	2.52	2.37	2.25	2.10	1.92	1.70	1.56	1.39
70	3.98	3.13	2.74	2.50	2.35	2.23	2.07	1.89	1.67	1.53	1.35
80	3.96	3.11	2.72	2.49	2.33	2.21	2.06	1.88	1.65	1.51	1.31
90	3.95	3.10	2.71	2.47	2.32	2.20	2.04	1.86	1.64	1.49	1.31
100	3.94	3.09	2.70	2.46	2.30	2.19	2.03	1.85	1.63	1.49	1.26
125	3.92	3.07	2.68	2.44	2.29	2.17	2.01	1.83	1.60	1.45	1.21
150	3.90	3.06	2.66	2.43	2.27	2.16	2.00	1.82	1.59	1.44	1.18
200	3.89	3.04	2.65	2.42	2.26	2.14	1.98	1.80	1.57	1.42	1.14
300	3.87	3.03	2.64	2.41	2.25	2.13	1.97	1.79	1.55	1.39	1.10
400	3.86	3.02	2.63	2.40	2.24	2.12	1.96	1.78	1.54	1.38	1.07
500	3.86	3.01	2.62	2.39	2.23	2.11	1.96	1.77	1.54	1.38	1.06
1000	3.85	3.00	2.61	2.38	2.22	2.10	1.95	1.76	1.53	1.36	1.03
8	3.84	2.99	2.60	2.37	2.21	2.09	1.94	1.75	1.52	1.35	1.00

Окончание таблицы значений F-критерия Фишера

	F	G	Н	1	J	K	L	М	N	C
79	Эмпирические значения критерия Фишер	a:			Теоретические значения критерия Фише					я Фишера:
80	по фактору А:	57.484	>	F теор	2.04	т.е. в	т.е. влияние фактора А существенно			
81	по фактору В:	21.491	>	F теор	2.47	т.е. в	лияни	е фак	тора В суг	цественно
82	по совместному влиянию факторов А и В:	24.592	>	F теор	1.58	т.е. в	лияни	е взаи	имодейств	ия факторое

20) Оцените вклад в общую дисперсию учтенных факторов A, B, их взаимодействия AB и неучтенных факторов в процентах по формулам:

$$\begin{split} & E_A = (SS_A / SS_{o \delta u \mu}) \cdot 100\%, \quad E_B = (SS_B / SS_{o \delta u \mu}) \cdot 100\%, \\ & E_{AB} = (SS_{AB} / SS_{o \delta u \mu}) \cdot 100\%, \quad E_{o c m} = (SS_{o c m} / SS_{o \delta u \mu}) \cdot 100\%. \end{split}$$

Для этого

- в ячейку I95 впишите выражение = H62*100/ H61;
- в ячейку **I96** впишите выражение = **H63*100/ H61**;
- в ячейку **I97** впишите выражение = **H64*100/ H61**;
- в ячейку I98 впишите выражение = H65*100/ H61.

21) В ячейке **I99** сосчитайте сумму $E_A + E_B + E_{AB} + E_{ocm}$ – она должна составить 100 %.

22) Отобразите графически Зависимость изменения содержаний тяжелой фракции от уровня фактора *A* (от положения профиля вдоль берега). Для этого

• скопируйте в Таблице 2 содержимое ячеек N23, N27, N31, N35, N39, N43, N47, N51, N55 (при копировании воспользуйтесь клавишей Ctrl);

• внесите скопированные данные в Таблицу 6 следующим образом:

- поместите курсор мыши в ячейку AJ20;

- правой кнопкой мыши вызовите контекстное меню и выберите команду Специальная вставка;

- в открывшемся окне отметьте значения и нажмите OK;

			AI	AJ
		12	Таблица	6
Специальная встав	ка ? 🗙	13		
Вставить		14		
Овсе	С с исходной темой	15	• • •	Среднее
О формулы	С без рамки	16	Nº	по
Эначения	C <u>ш</u> ирины столбцов	17	профиля	строкам
О форма <u>т</u> ы	О форму <u>л</u> ы и форматы чисел	19		
С приме <u>ч</u> ания	C значени <u>я</u> и форматы чисел	20	A1	3.17
🔘 условия на значения		21	A2	5.94
Операция		22	A3	3.75
● <u>н</u> ет	○ умножить	23	A4	0.5
С сложить	C <u>р</u> азделить	24	A5	3.49
С в <u>ы</u> честь		25	A6	0.82
пропускать пустые ячейки	транспонировать	26	A7	2.01
		27	A8	2.59
Вставить связь	ОК Отмена	28	A9	3.45

• выделите графический шаблон «Зависимость изменения содержаний тяжелой фракции от уровня фактора *A*» и выполните действия, описанные в п. 9 Задания 1. В качестве **значений** выберите групповые средние по уровням фактора *A* (диапазон ячеек **AJ20**: **AJ28**). В качестве **подписи оси** укажите диапазон **AI20:AI28**, содержащий номер профиля (или уровня фактора *A*).

23) Отобразите графически Зависимость изменения содержаний тяжелой фракции от уровня фактора *B* (от глубины моря). В качестве значений выберите групповые средние по уровням фактора *B* (диапазон ячеек 157:М57 из Таблицы 2). В качестве подписи оси укажите диапазон 116:М16 из Таблицы 2 (глубины моря, в метрах).

24) Отобразите графически Зависимости изменения содержаний тяжелой фракции от взаимодействия факторов *A* и *B* (от положения профиля вдоль берега и глубины моря).

Для этого

• скопируйте в Таблице 2 средние ячеек в интервалах I23:M23, I27:M27, I31:M31, I35:M35, I39:M39, I43:M43, I47:M47, I51:M51, I55:M55;

• внесите скопированные данные в Таблицу 7, воспользовавшись командой Специальная вставка из контекстного меню;

	AL	AM	AN	AO	AP	AQ					
14	Средние сод	держания тях	ержания тяжелой фракции по взаимодействию								
15	факторов А	и В, % (сред	ние в яче	йках)							
16											
17			Глубі	ина моря,	М						
18	из профиля	4 м	5м	6м	7м	8м					
19	Уровни		Уровн	и фактора	a B						
20	фактора А	B1	B2	B4	B5						
21	A1	1.6	2.05	4.45	2.1						
22	A2	1.6	5.1	9.95	3.45	9.6					
23	A3	1.85	0.6	8.45	7.65	0.2					
24	A4	1.75	0.65	0.1	0	0					
25	A5	7.3	4	4.05	1.82	0.26					
26	A6	1.55	1.05	1.25	0.25	0					
27	A7	4.75	2.1	0.75	1	1.45					
28	A8	1.25	2.05	2.95	1.7	5					
29	A9	1.55	0.7	3.4	6.15	5.45					

• выделите графический шаблон «Зависимость изменения содержаний тяжелой фракции от взаимодействия факторов *A* и *B*»;

• с помощью команды Выбрать данные вкладки Конструктор, укажите новый диапазон ячеек во всплывшем окне Выбор источника данных (см. п. 9 Задания 1);

Зыбор источника данных				
Диапазон данных для диаграммы:				
Диапазон данных слишком сложен для отображения. П диапазон будет заменен.	ри выборе нового диапазона старый			
Строка/стол	бец			
Элементы легенды (ряды)	Подписи горизонтальной оси (категории)			
🚰 Добавить 📝 Изменить 🗙 Удалить 💮 🦆	☑ Изменить			
Ряд 1	1			
Скрытые и пустые ячейки	ОК Отмена			

• в окне Изменение ряда в строку Имя ряда можно вписать A1, либо указать мышкой ячейку AL21, содержащую имя уровня фактора *A*;

• в строку Значения с помощью мышки внесите интервал AM21:AQ21, содержащий средние в ячейках на уровне A1;

	AL	AM	AN	AO	AP	AQ			
16	Таблица 7	(групповые	групповые средние из Табл. 2)						
17			Глубина моря, м						
18	пепрофиля	4 м	5м	6м	7м	8 м			
19	Уровни		Уровн	ни фактора	В				
20	фактора А	B1	B2	B3	B4	B5			
21	A1	1.6	1.6 2.05 5.65 4.45						
22	A2	1.6	5.1 9.95			9.6			
23	A3	Изменен	ие ряда		? ×	0.2			
24	A4	Имя ряда:				0			
25	A5	=Шаблон!\$AL	\$21	- A	1	0.26			
26	A6	<u>З</u> начения:				0			
27	A7	=Шаблон!\$АМ	1\$21:\$AQ\$21	= 1	.6 2.05 5.6	1.45			
28	A8		L	ОК	Отмена	5			

• в строку Подписи оси внесите интервал AM18:AQ18, содержащий глубины моря, на которых отбирались пробы по профилю;

	AL	AM	AN	AO	AP	AQ				
16	Таблица 7	(групповые	групповые средние из Табл. 2)							
17			Глубина моря, м							
18	не профили	4 м	5м	6м	7м	8м				
19	Уровни		Уровн	и фактора	В					
20	фактора А	B1	B2	B3	B4	B5				
21	A1	1.6	2.05	5.65	4.45	2.1				
22	A2	1.6	5.1	9.95	3.45	9.6				
23	A3	1.85	1.85 0.6 8.45 7.65							
24	A4	Подписи	оси		? ×	0				
25	A5	Диапазон подп	исей оси:			0.26				
26	A6	=Шаблон!\$АМ	=Шаблон!\$AM\$18:\$AQ\$18 💽 = 4 м 5 м 6 м							
27	A7		[ОК	Отмена	1.45				
28	A8	1.25	2.05	2.95	1.7	5				

• в окне Выбор источника данных воспользуйтесь командой Добавить и во всплывшее окно Изменение ряда внесите имя уровня А2 и интервал значений AM22:AQ22, содержащий средние в ячейках на уровне A2;

Выбор источника данных					
Диапазон данных для диаграммы: =Шаблон!\$AL\$18:\$AQ\$18 Шаблон!\$AL\$21:\$AQ\$21					
Строка/столбец					
Элементы легенды (р <u>я</u> ды)	Подписи горизонтальной оси (категории)				
🚰 Добавить 📝 Изменить 🗙 Удалить 💿 🦆	Изменить				
A1	4 M				
	5 M				
	6 м				
	7 M				
	8 M				
Скрытые и пустые ячейки	ОК Отмена				

	AL	AM	AN	AO	AP	AQ		
16	Таблица 7	(групповые средние из Табл. 2)						
17			Глубина моря, м					
18	п≌профиля	4 м	5м	6м	7м	8 м		
19	Уровни		Уровн	ни фактора	В			
20	фактора А	B1	B2	B3	B4	B5		
21	A1	1.6	2.05	5.65	2.1			
22	A2	1.6	1.6 5.1 9.95 3.45					
23	A3	Изменен	Изменение ряда ? 🗙					
24	A4	Имя ряда:				0		
25	A5	=Шаблон!\$AL\$	22	🚺 = A2		0.26		
26	A6	Значения:	Значения:					
27	A7	=Шаблон!\$АМ\$	22:\$AQ\$22	1.6 er	5.1 9.95	1.45		
28	A8			OK	Отмена	5		

• воспользуйтесь командой Добавить для каждого следующего уровня фактора *A*, пока не будут внесены данные по всем 9 профилям.

Выбор источника данных	? ×					
Диапазон данных для диаграммы: 🗏 = Шаблон (\$AL\$1	Диапазон данных для диаграммы: 🔲 🖽 аблон! \$AL\$18:\$AQ\$18 Шаблон! \$AL\$21:\$AQ\$29 📧					
Строка/стол	бец					
Элементы легенды (ряды)	Подписи горизонтальной оси (категории)					
🚰 Добавить 📝 Изменить 🗙 Удалить 💮 🌻	№ Изменить					
A5	4 M					
A6	5 M					
A7	6 M					
A8	7 M					
A9 🗸	8 M					
Скрытые и пустые ячейки	ОК Отмена					

25) В Таблице 8 с помощью логической формулы ЕСЛИ выполните сравнение средних значений в ячейках с генеральным средним.

Для этого

• поместите курсор в ячейку АТ21;

• на вкладке Формулы в группе Библиотека функций нажмите кнопку Логические и в выпавшем списке выберите функцию ЕСЛИ;

• в диалоговом окне Аргументы функции задайте установки: Лог_выражение – АМ21>\$N\$57.

Значение_ если истина – AM21 (т.е. само значение). Значение_ если ложь – нажмите пробел.

• OK;

/	Аргументы функции 🔋 🔀							
	ЕСЛИ							
	Лог_выражение	AM21>\$N\$57	= ИСТИНА					
	Значение_если_истина	AM21	= 1.6					
	Значение_если_ложь	<u> </u>	=					
	=							
	Проверяет, выполняется ли у значение, если нет.	словие, и возвращает одно значение	, если оно выполняется, и другое					
	Значение_если_ложь значение, которое возвращается, если 'лог_выражение' инеет значение ЛОЖЬ. Если не указано, возвращается значение ЛОЖЬ.							
	Значение:							
1	Справка по этой функции		ОК Отмена					

	AS	AT	AU	AV	AW	AX	
16	Таблица 8						
17			Глубина моря, м				
18		4 м	5м	6м	7м	8 м	
19	Уровни		Уровни фактора В				
20	фактора А	B1	B2	B3	B4	B5	
21	A1	=ЕСЛИ(А	M21>\$N	57 AM21	" ")		
22	A2						
23	A3						

• протяжкой за нижний правый угол ячейки AT21 вправо и вниз заполните интервал AT21: AX29.

	Глубина моря, м					
м≊ профиля	4 м	5 м	6 м	7м	8 м	
Уровни		Уро	вни фактој	ba B		
фактора А	B1	B2	B3	B4	B5	
A1			5.65	4.45		
A2		5.1	9.95	3.45	9.6	
A3			8.45	7.65		
A4						
A5	7.3	4	4.05			
A6						
A7	4.75					
A8			2.95		5	
A9			3.4	6.15	5.45	

26) Проверьте полученные результаты с помощью встроенной в пакет Анализ данных программы Двухфакторный дисперсионный анализ с повторениями. Для этого

• скопируйте в Таблицу 9 исходные данные из Таблицы 2 (воспользуйтесь клавишей **Ctrl**, чтобы избежать копирования строк со средними в ячейках);

• на вкладке Данные в группе Анализ нажмите кнопку Анализ данных и в диалоговом окне Анализ данных выберите режим Двухфакторный дисперсионный анализ с повторениями;

• в одноименном диалоговом окне задайте установки:

<u>Входной интервал</u> – введите ссылку на ячейки, содержащие анализируемые данные **F112:K139**.

<u>Число строк для выборки</u> – **3** (количество отборов проб на одной глубине).

<u>Уровень значимости α – 0.05.</u>

<u>Выходной интервал</u> – укажите в виде ссылки на левую верхнюю ячейку выходного диапазона, например **М107**.

• ОК.

Двухфакторный ,	дисперсионн	ый ? 🗙
Входные данные В <u>х</u> одной интервал: Ч <u>и</u> сло строк для выборки: <u>А</u> льфа:	\$F\$112:\$K\$139	ОК Отмена <u>С</u> правка
Параметры вывода	\$M\$107	1

4	М	N	0	Р	Q	R	S	
107	Двухо	ракторныі	й дисперсионный анализ	с повт	орениям	И		
108								
109	ИТОГ	B1	B2	B3	B4	B5	Итого	
110	A1							
111	Счет	3	3	3	3	3	15	
112	Сумм	4.8	6.15	16.95	13.35	6.3	47.55	
113	Сред	1.6	2.05	5.65	4.45	2.1	3.17	
114	Диспе	0.01	0.0025	0.122	4.6225	0.09	3.4039	
115								
116	A2							
117	Счет	3	3	3	3	3	15	
118	Сумм	4.8	15.3	29.85	10.35	28.8	89.1	
119	Сред	1.6	5.1	9.95	3.45	9.6	5.94	
120	Диспе	0.04	0.81	3.063	0.0025	0.16	12.414	
121								
122	A3							
123	Счет	3	3	3	3	3	15	
124	Сумм	5.55	1.8	25.35	22.95	0.6	56.25	
125	Сред	1.85	0.6	8.45	7.65	0.2	3.75	
126	Диспе	0.0025	0.01	0.303	0.1225	1E-33	13.656	
127								
128	A4							
129	Счет	3	3	3	3	3	15	
130	Сумм	5.25	1.95	0.3	0	0	7.5	
131	Сред	1.75	0.65	0.1	0	0	0.5	
132	Диспе	0.0225	0.0225	3E-34	0	0	0.4875	
133								
134	A5							
135	Счет	3	3	3	3	3	15	
136	Сумм	21.9	12	12.15	5.46	0.765	52.275	
137	Сред	7.3	4	4.05	1.82	0.255	3.485	
138	Диспе	2.25	0.81	0.563	0.5329	0.06	6.6759	
139								
140	A6							
141	Счет	3	3	3	3	3	15	
142	Сумм	4.65	3.15	3.75	0.75	0	12.3	
143	Сред	1.55	1.05	1.25	0.25	0	0.82	
144	Диспе	0.3025	0.0025	0.002	0.0025	0	0.4231	
145								
146	A7							

147	Счет	3	3	3	3	3	15	
148	Сумм	14.25	6.3	2.25	3	4.35	30.15	
149	Сред	4.75	2.1	0.75	1	1.45	2.01	
150	Диспе	0.5625	0.04	0.023	0	0.0025	2.3261	
151								
152	A8							
153	Счет	3	3	3	3	3	15	
154	Сумм	3.75	6.15	8.85	5.1	15	38.85	
155	Сред	1.25	2.05	2.95	1.7	5	2.59	
156	Диспе	0.1225	0.0225	0.422	0.01	0.16	1.9947	
157								
158	A9							
159	Счет	3	3	3	3	3	15	
160	Сумм	4.65	2.1	10.2	18.45	16.35	51.75	
161	Сред	1.55	0.7	3.4	6.15	5.45	3.45	
162	Диспе	0.4225	0.01	1.21	14.823	0.0025	7.1664	
163								
164	того							
165	Счет	27	27	27	27	27		
166	Сумм	69.6	54.9	109.7	79.41	72.165		
167	Сред	2.57778	2.033333333	4.061	2.9411	2.6728		
168	Диспе	4.21276	2.439615385	11.13	8.1778	10.327		
169								
170								
171	Диспе	рсионный	й анализ					
172	ник ва	SS	df	MS	F	Значени	итичес	кое
173	Выбо	324.598	8	40.57	57.484	4E-32	2.043	
174	Стол	60.6768	4	15.17	21.491	2E-12	2.4729	
175	Взаим	555.466	32	17.36	24.592	3E-32	1.572	
176	Внутр	63.5259	90	0.706				
177								
178	Итого	1004.27	134					

Сравните рассчитанные по формулам значения средних на уровнях и в ячейках, дисперсии, критерии Фишера со значениями, рассчитанными автоматически.

Учебное издание Составитель Людмила Анатольевна Христенко

ДИСПЕРСИОННЫЙ АНАЛИЗ

Практикум для студентов III–IV курсов по дисциплине «Математические методы в геологии»

Редактор Е.В. Шумилова Корректор В.Е. Пирожкова

Подписано к использованию 25.04.2016. Объем данных 5.45 Мб

Издательский центр Пермского государственного национального исследовательского университета 614990, г. Пермь, ул. Букирева, 15