Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет»

На правах рукописи

ИЛАЛОВА РЕГИНА КАШИФОВНА

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ, СОСТАВ И УСЛОВИЯ ФОРМИРОВАНИЯ НИКЕЛЕНОСНОЙ КОРЫ ВЫВЕТРИВАНИЯ ГИПЕРБАЗИТОВ СЕРОВСКО-МАУКСКОГО ОФИОЛИТОВОГО ПОЯСА

Специальность 25.00.01 – Общая и региональная геология

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата геолого-минералогических наук

Научный руководитель – доктор геолого-минералогических наук, профессор Таловина Ирина Владимировна

Санкт-Петербург – 2018

оглавление

	5
1. КРАТКИЕ СВЕДЕНИЯ ОБ ОТКРЫТИИ И ИСТОРИИ ИЗУЧЕНИЯ КОР	Ы
ВЫВЕТРИВАНИЯ ГИПЕРБАЗИТОВ СЕРОВСКО-МАУКСКОГО	
ОФИОЛИТОВОГО ПОЯСА	.12
1.1. Вопросы терминологии процесса выветривания	.12
1.2. Сведения об открытии коры выветривания гипербазитов Серовско-	
Маукского офиолитового пояса.	.15
1.3 Изученность коры выветривания гипербазитов Серовско-Маукского	
офиолитового пояса.	.21
Выводы по главе 1	.23
2. ОПИСАНИЕ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ СЕРОВСКО-	
МАУКСКОГО ОФИОЛИТОВОГО ПОЯСА	.25
2.1. Стратиграфия	.26
2.2. Интрузивный магматизм.	.34
2.3. Тектоническое строение	.37
Выводы по главе 2	43
3. ВЕЩЕСТВЕННЫЙ СОСТАВ, ЗОНАЛЬНОСТЬ И ГЕНЕЗИС КОР	
ВЫВЕТРИВАНИЯ	45
3.1. Фактический материал и методы исследования.	45
3.2. Химические особенности пород коры выветривания	.46
3.3. Минеральный состав и зональность кор выветривания	.57
3.4. Последовательность минералообразования в гипербазитах Серовско-	
Мауского офиолитового пояса.	.76
25 A manual management D^{2} D management M and M	
5.5. Анализ поведения F55 в породах коры выветривания	.85
 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. 	. 85 . 94
3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8 1 Выводы по главе 3 1	. 85 . 94 105
 3.5. Анализ поведения РЗЭ в породах коры выветривания	. 85 . 94 105
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3 4. ТЕРМОМЕТРИЯ ХЛОРИТОВ КАК ИНДИКАТОРОВ УСЛОВИЙ МИНЕРАЛООБРАЗОВАНИЯ В КОРАХ ВЫВЕТРИВАНИЯ 	. 85 . 94 105 107
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3 4. ТЕРМОМЕТРИЯ ХЛОРИТОВ КАК ИНДИКАТОРОВ УСЛОВИЙ МИНЕРАЛООБРАЗОВАНИЯ В КОРАХ ВЫВЕТРИВАНИЯ. 4.1. Фактический материал и методы исследования. 	.85 .94 105 107 108
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3 4. ТЕРМОМЕТРИЯ ХЛОРИТОВ КАК ИНДИКАТОРОВ УСЛОВИЙ МИНЕРАЛООБРАЗОВАНИЯ В КОРАХ ВЫВЕТРИВАНИЯ. 4.1. Фактический материал и методы исследования. 4.2. Вариации химического состава хлоритов из различных зон профилей 	. 85 . 94 105 107 108
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3 4. ТЕРМОМЕТРИЯ ХЛОРИТОВ КАК ИНДИКАТОРОВ УСЛОВИЙ МИНЕРАЛООБРАЗОВАНИЯ В КОРАХ ВЫВЕТРИВАНИЯ. 4.1. Фактический материал и методы исследования. 4.2. Вариации химического состава хлоритов из различных зон профилей выветривания гипербазитов. 	. 85 . 94 105 107 108
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3 4. ТЕРМОМЕТРИЯ ХЛОРИТОВ КАК ИНДИКАТОРОВ УСЛОВИЙ МИНЕРАЛООБРАЗОВАНИЯ В КОРАХ ВЫВЕТРИВАНИЯ. 4.1. Фактический материал и методы исследования. 4.2. Вариации химического состава хлоритов из различных зон профилей выветривания гипербазитов. 4.3. Термометрия хлоритов 	. 85 . 94 105 107 108 120 126
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3	. 85 . 94 105 107 108 120 126 132
 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3	.85 .94 105 107 108 120 126 132
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3	.85 .94 105 107 108 120 126 132
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3. 4. ТЕРМОМЕТРИЯ ХЛОРИТОВ КАК ИНДИКАТОРОВ УСЛОВИЙ МИНЕРАЛООБРАЗОВАНИЯ В КОРАХ ВЫВЕТРИВАНИЯ. 4.1. Фактический материал и методы исследования. 14.2. Вариации химического состава хлоритов из различных зон профилей выветривания гипербазитов. 4.3. Термометрия хлоритов . 15. РЕГИОНАЛЬНЫЙ НИЗКОГРАДНЫЙ МЕТАМОРФИЗМ КАК РУДОПОДГОТОВИТЕЛЬНЫЙ ПРОЦЕСС НА ТЕРРИТОРИИ СЕРОВСКО МАУКСКОГО ОФИОЛИТОВОГО ПОЯСА. 	.85 .94 105 107 108 120 126 132
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3. 4. ТЕРМОМЕТРИЯ ХЛОРИТОВ КАК ИНДИКАТОРОВ УСЛОВИЙ МИНЕРАЛООБРАЗОВАНИЯ В КОРАХ ВЫВЕТРИВАНИЯ. 4.1. Фактический материал и методы исследования. 4.2. Вариации химического состава хлоритов из различных зон профилей выветривания гипербазитов. 4.3. Термометрия хлоритов Выводы по главе 4. 5. РЕГИОНАЛЬНЫЙ НИЗКОГРАДНЫЙ МЕТАМОРФИЗМ КАК РУДОПОДГОТОВИТЕЛЬНЫЙ ПРОЦЕСС НА ТЕРРИТОРИИ СЕРОВСКО МАУКСКОГО ОФИОЛИТОВОГО ПОЯСА. 5.1. Свидетельства участия эндогенных процессов в формировании кор 	.85 .94 105 107 108 120 126 132)- 134
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3	.85 .94 105 107 108 120 126 132)- 134
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3. 4. ТЕРМОМЕТРИЯ ХЛОРИТОВ КАК ИНДИКАТОРОВ УСЛОВИЙ МИНЕРАЛООБРАЗОВАНИЯ В КОРАХ ВЫВЕТРИВАНИЯ. 4.1. Фактический материал и методы исследования. 4.2. Вариации химического состава хлоритов из различных зон профилей выветривания гипербазитов. 4.3. Термометрия хлоритов выводы по главе 4. 5. РЕГИОНАЛЬНЫЙ НИЗКОГРАДНЫЙ МЕТАМОРФИЗМ КАК РУДОПОДГОТОВИТЕЛЬНЫЙ ПРОЦЕСС НА ТЕРРИТОРИИ СЕРОВСКО МАУКСКОГО ОФИОЛИТОВОГО ПОЯСА. 5.1. Свидетельства участия эндогенных процессов в формировании кор выветривания на Урале. 5.2. Региональный низкоградный метаморфизм и его роль в формировании 	.85 .94 105 107 108 120 126 132 132
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3	.85 .94 105 107 108 120 126 132)- 134 135 и ого
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3	.85 .94 105 107 108 120 126 132)- 134 135 и ого 137
 3.5. Анализ поведения РЗЭ в породах коры выветривания. 3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8. Выводы по главе 3	.85 .94 105 107 108 120 126 132 132 134 135 и ого 137 2р

Выводы по главе 5	
ЗАКЛЮЧЕНИЕ.	
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	
ПРИЛОЖЕНИЕ 1.	
ПРИЛОЖЕНИЕ 2.	
ПРИЛОЖЕНИЕ 3.	

СПИСОК СОКРАЩЕНИЙ И ИСПОЛЬЗУЕМЫХ ОБОЗНАЧЕНИЙ

- Afcl безалюминиевый хлорит
- Ате амезит
- Cal кальцит
- Chl хлорит
- Chr хромшпинелид
- $Cln-\kappa$ линохлор
- Dol доломит
- Dph дафнит
- Нет гематит
- Mag магнетит
- Mgs магнезит
- Prl пиролюзит
- Qz кварц
- Sd-сидерит
- Srp серпентин
- Tlc тальк

ВВЕДЕНИЕ

Актуальность темы исследования. Работа представляется актуальной, поскольку по корам выветривания гипербазитов Серовско-Маукского офиолитового пояса большинство работ было выполнено в 60–70х годах прошлого столетия (А.В. Вторушин, Л.И. Кононова, Н.А. Журавлева, Е.Н. Куземкина, В.И. Русский) и с того момента крупных научноисследовательских работ в пределах рассматриваемой части Урала не проводилось.

В настоящее время никелевая промышленность Урала испытывает острый дефицит никелевого сырья, в значительной мере из-за отсутствия кондиционных никелевых руд. В связи с этим встает вопрос о прогнозировании и поисках глубинных никелевых залежей на месте образования рудных концентраций эндогенного и экзогенного генезиса.

Коры выветривания обладают уникальной геологической природой. Информативность их состава и строения к климатическим, фациальным и тектоническим условиям может быть использована при расшифровке геологической истории региона. Вопрос особенностей формирования никеленосной коры выветривания гипербазитов Серовско-Маукского офиолитового пояса является до конца нерешенным. В работе одним из подходов к решению данного вопроса является метод термометрии хлоритов, который существенно расширяет возможности анализа эволюции Р–Т условий при образовании горных пород и руд.

Таким образом, решение поставленного вопроса значительно приближает исследователей к пониманию специфики литогенеза и связанных с ним процессов на территории Серовско-Маукского офиолитового пояса, позволяет реконструировать процессы перераспределения и накопления рудных компонентов при гипергенезе и, наконец, результаты могут использоваться при прогнозных оценках территории на никель.

Объекты исследования. Коры выветривания по дунитгарцбургитовым породам Кольского, Устейского и Вагранского массивов Серовско-Маукского офиолитового пояса – северной ветви офиолитового пояса Урала (объекты №№ 2, 3, 4, 6, 7, 8).

Степень разработанности исследуемого направления. Коры выветривания гипербазитов Серовско-Маукского офиолитового пояса имеют долгую историю изученности, начиная с 1966 г. Работами В.Н. Разумовой (1977); Б.М. Михайлова (2003), В.Г. Лазаренкова (2009), Н.И. Воронцовой (2009)исследователями обсуждался И другими вопрос роли 0 гидротермальных процессов при возникновении гипергенных никелевых месторождений, где главными аргументами служили структурноминералогические настоящей работе геологические и признаки. В полученные результаты хлоритовой термометрии могут способствовать конкретизации температурных условий при которых формировались коры выветривания и уточнению вопроса их генезиса.

Цель работы. Реконструкция главных закономерностей континентального выветривания гипербазитов Серовско-Маукского офиолитового пояса на основе геологического строения и вещественного состава кор выветривания.

Задачи:

1. Изучение геологического строения кор выветривания гипербазитовых массивов – Кольского, Устейского и Вагранского, их минералогических и геохимических особенностей.

2. Установление зональности и генетической принадлежности профилей выветривания гипербазитов на изучаемых объектах.

3. Количественная оценка температур образования хлоритов как индикаторов условий образования пород, слагающих коры выветривания гипербазитов.

 Установление роли и позиции регионального низкоградного метаморфизма в формировании кор выветривания на территории Серовско-Маукского офиолитового пояса.

Фактический материал, методы исследования, личный вклад автора. Автором в период 2015-2017 гг. проводилось комплексное изучение геологических, минералогических и геохимических особенностей кор выветривания гипербазитов Серовско-Маукского офиолитового пояса. В основу работы положен оригинальный каменный материал (около 500 образцов), собранный автором во время полевых работ на объектах исследования, а также геологические разрезы по изучаемым массивам (около 150 штук). Кроме этого были привлечены коллекции гипергенных метасоматических образований И.В. Таловиной и В.Г. Лазаренкова.

Аналитические исследования проводились в ИГГД РАН (г. Санкт-Петербург), СПГУ (г. Санкт-Петербург), ИХС РАН (г. Санкт-Петербург), ДВГИ ДВО РАН (г. Владивосток), а также в лаборатории Фрайбергской горной академии (Германия). Минеральные фазы диагностировались оптикомикроскопическим, рентгено-дифракционным, термическим, Оптикомикрорентгеноспектральным И рамановским методами. микроскопические исследования (около 400 шлифов И аншлифов) производились при помощи микроскопа Leica DM2700 Р (СПГУ). Рентгенодифракционные анализы (60 определений) выполнялись на дифрактометрах XRD 3000 TT и URD-6 (Фрайбергская горная академия, д-р Р. Клееберг). Комплексный Германия, термический анализ (30) определений) проводился на установке STA 429CD+QMS (ИХС РАН, В.Л. Уголков). Микрорентгеноспектральные (более 300 анализы определений) проводились на сканирующем электронном микроскопе JSM-6510LA (ИГГД РАН, О.Л. Галанкина). Рамановская спектроскопия (60 определений) производилась на приборе Invia Reflex фирмы Renishaw (Горный университет, Е.А. Васильев).

Содержания редкоземельных элементов (около 60 проб) были определены методом масс-спектрометрии с индуктивно-связанной плазмой (ДВГИ ДВО РАН, Н.В. Зарубина).

В процессе исследований привлекались фондовые материалы Воронцовской геологоразведочной партии (п. Рудный, г. Краснотурьинск, Свердловская область).

Защищаемые положения:

1. В пределах Сосьвинской и Замарайской депрессий Кольского Устейского Вагранского массива. а также И массивов развита инфильтрационно-метасоматическая (шамозитовая) кора выветривания, образованная в анаэробных условиях с образованием шамозитовых, миллерит-бриндлейит-шамозитовых, бертьерин-клинохлор-шамозитовых пород, тогда как в пределах Катасьминской депрессии Кольского массива развита остаточная кора выветривания с преобладанием кварц-гетитовых, клинохлор-пеннин-талькохлоритовых, непуит-хризотил-лизардитовых пород.

2. По данным термометрии хлоритов формирование профиля выветривания происходило по гипербазитам, подвергнутых воздействию гидротермальных растворов двух температурных интервалов 75-125 °C и 175-300 °C. При этом содержание никеля в хлоритах повышается с понижением температуры их образования.

3. Формирование никеленосных кор выветривания гипербазитовых массивов Серовско-Маукского офиолитового пояса, происходило после регионального низкоградного метаморфизма цеолитовой фации, приводившего к подготовке рудоносного тектонизированного субстрата месторождений, в раннемезозойском этапе тектоно-магматической активизации региона.

Научная новизна.

1. Ha основе комплекса геологических, минералогических И обосновано геохимических данных широкое распространение инфильтрационно-метасоматической (шамозитовой) коры выветривания в пределах Устейского, Вагранского и большей части Кольского массивов, и подчиненное развитие остаточной коры выветривания в южной части Кольского массива.

2. Впервые для кор выветривания Серовско-Маукского офиолитового пояса по результатам термометрии хлоритов дана количественная оценка температур их образования, что подтверждает участие гидротермальных растворов в их формировании.

3. Впервые обосновано, что формирование никеленосных кор выветривания Серовско-Маукского офиолитового пояса происходило после регионального низкоградного метаморфизма цеолитовой фации, приводившего к подготовке рудоносного тектонизированного субстрата месторождений.

Практическая значимость. Выявленные типы профилей выветривания и минеральные разновидности по ним на изучаемых объектах могут способствовать повышению эффективности геологоразведочных работ на никель. Более того, результаты проведенных исследований могут быть использованы при прогнозировании и поисках глубинных никелевых залежей.

Апробация и реализация результатов работы. Результаты работы докладывались на всероссийских и международных конференциях: 56-ой Краковской конференции базе международной научной на горнометаллургической академии (Краков, Польша, 2015); международной конференции «Проблемы геологии эксплуатации И месторождений металлов» (Горный университет, 2016); платиновых международной конференции молодых ученых «Freiberg-St.Petersburg Colloquium of young scientists» (Фраибергская Горная академия, Фраиберг, Германия, 2016); V международной научно-практической конференции молодых ученых и специалистов памяти академика А.П.Карпинского» (Санкт-Петербург, 2017); юбилейном съезде РМО «200 лет РМО» (Горный университет, 2017).

По теме диссертации опубликовано 12 работ, из них 6 в изданиях, рекомендованных ВАК Минобрнауки России.

Достоверность защищаемых положений и выводов определяется представительностью каменного материала, тщательным анализом

результатов предыдущих работ по объектам, детальностью проведенных геологических и минералогических наблюдений, использованием в работе современных методов исследования, надежностью исходных аналитических данных, полученных по сертифицированным методикам в аккредитованных лабораториях, непротиворечивостью полученных геологических и минералогических данных.

Структура и объем работы. Диссертация состоит из введения, пяти глав и заключения, содержит 177 страниц, включая 67 иллюстраций, 28 таблиц, библиографический список из 107 наименований и 3 приложения. Защищаемое положение №1 раскрыто в главе 3, защищаемое положение №2 – в главе 4, защищаемое положение №3 – в главе 5.

В первой главе приведены краткие сведения об открытии и истории гипербазитов выветривания Серовско-Маукского изучения коры офиолитового пояса. Во второй главе рассмотрено геологическое строение Серовско-Маукского офиолитового пояса. В *третьей главе* представлены вещественный состав, зональность и генезис кор выветривания. Четвертая глава посвящена термометрии хлоритов как индикаторов условий минералообразования в корах выветривания. В *пятой главе* обсуждается метаморфизма позиция регионального низкоградного В роли рудоподготовительного процесса в формировании кор выветривания Серовско-Маукского офиолитового пояса.

Благодарности. Автор выражает благодарность своему научному руководителю д.г.-м.н. И.В. Таловиной за ее ценные консультации, помощь и поддержку в подготовке диссертации.

Глубочайшую признательность за научные консультации и неоценимую поддержку автор хочет выразить проф. Ю.Л. Гульбину (Горный университет), доц. Н.А. Алфимовой (ИГГД РАН) и чл.-корр. РАН В.Г. Сахно (ДВГИ ДВО РАН).

За возможность участвовать в полевых работах и помощь в сборе полевых материалов автор выражает благодарность главному геологу ОАО

«Уфалейникель» и Серовского рудника – В.И. Володину. Отдельную благодарность за предоставление фондовых материалов автор выражает сотруднику ООО «Институт Гипроникель» - А.В. Шамшеву.

За ценные критические замечания автор очень благодарен чл.-корр. РАН Ю.Б. Марину, проф. Е.Д. Михайловой, доц. Р.А. Щеколдину, доц. М.Г. Цинкобуровой, асс. А.Б. Тарасенко.

Значительную помощь в проведении лабораторных исследований оказали О.Л. Галанкина (ИГГД РАН), к.г.-м.н. Е.А. Васильев (Горный университет), Н.В. Зарубина (ДВГИ ДВО РАН), В.Л. Уголков (ИХС РАН), Р. Клееберг (Фрайбергская горная академия) – всем автор выражает искреннюю благодарность. Автор душевно благодарит свою маму М.А. Сагдиеву за постоянную моральную поддержку.

1. КРАТКИЕ СВЕДЕНИЯ ОБ ОТКРЫТИИ И ИСТОРИИ ИЗУЧЕНИЯ КОРЫ ВЫВЕТРИВАНИЯ ГИПЕРБАЗИТОВ СЕРОВСКО-МАУКСКОГО ОФИОЛИТОВОГО ПОЯСА.

1.1. Вопросы терминологии процесса выветривания.

Термин «выветривание» (verwitterung, weathering) пришел в русский язык из немецкой литературы, как об этом сообщил в 1899 г. Н.М. Богословский в его работе «О некоторых явлениях выветривания в области Русской равнины» (Богословский Н.А., 1899). Термин «Кора выветривания» «verwitterungs kruste» был впервые введен в геологическую литературу швейцарским геологом А. Геймом в 1879 г., который понимал под ним рыхлую, разрушенную массу коренных пород, залегающую на поверхности литосферы.

В настоящее время под этим термином понимаются процессы изменения (разрушения и преобразования) горных пород и минералов на земной поверхности под влиянием солнечной энергии и комплексного (физико-биохимического) воздействия газов атмосферы, воды и живых организмов (Додатко А.Д., 2004). В результате выветривания формируются гипергенные покровы, чаще именуемые корами выветривания, или элювием. По А.Е. Ферсману, зоной гипергенеза общепринято под понимать приповерхностную часть консолидированной литосферы, где выведенные на дневную поверхность либо на дно морского бассейна горные породы стремятся к равновесию с окружающей средой, подвергаясь при этом воздействию как экзогенных, так и эндогенных факторов.

В России изучение кор выветривания начинается в конце XIX века с возникновением Докучаевской школы почвоведения. Из этой школы вышли выдающиеся русские ученые, занимавшиеся различными отраслями естествознания, такие как В.И. Вернадский, Н.М. Сибирцев, Ф.Ю. Левинсон-Лессинг, П.А. Земятчинский, К.Д. Глинка. Основоположниками учения о коре выветривания в качестве самостоятельного раздела геологии считаются Б.Б. Полынов и И.И. Гинзбург (Полынов, 1934; Гинзбург, 1951, 1963). Как геологическая формация, обладающая нередко значительной мощностью, кора выветривания обычно повсюду характеризуется четко выраженным зональным строением, поскольку она представляет собой *метасоматическое образование*, возникшее в зоне гипергенеза в результате взаимодействия просачивающихся растворов с вмещающими их горными породами (Жариков В.А., 1998; Савко А.Д., 2007). Зоны характеризуются определенным набором происходящих в них процессов, минеральным новообразованием и, следовательно, физико-геохимические процессы образования (снизу-вверх): дезинтеграции, выщелачивания, гидратации и окисления (Гинзбург, 1951). Профилем коры выветривания называется совокупность зон выветривания, развивающихся на определенной горной породе под воздействием гипергенных процессов (Савко А.Д., 2007).

В связи с различной трактовкой каждой из зон профиля выветривания, рассмотрим каждую из них подробнее (рис.1.1):

1. Зона дезинтеграции (синонимы: обломочная, разуплотнения и дезинтеграции, начальных продуктов выветривания) – наименее измененная процессами выветривания зона, которая на ранней стадии выветривания теряет свою монолитность, разбиваясь системой трещин на блоки различной величины. Эта зона залегает на неизмененных материнских породах.

2. Зона выщелачивания (синонимы: сиаллитная, разложения, обызвесткованная, выветрелых или разложенных пород) – следующая стадия химического выветривания, в которой происходит вынос пород щелочных и щелочноземельных элементов, главным образом, Ca, Na, K, Mg.

3. Зона гидратации (синонимы: глинистая, разложения, кислая сиаллитная, сапролитовая), представленная глинистыми минералами, сохранившими реликтовую структуру материнских пород.

В глинистой зоне происходят глубокие изменения кристаллической структуры силикатов с образованием монтмориллонита, каолинита (при

выветривании средних и кислых пород), нонтронита (при выветривании ультраосновных пород) и т.д.

Рис. 1.1. Зональность коры выветривания гипербазитов Урала [по Таловиной, 2012]. Зоны: І - дезинтеграции, ІІ выщелачивания, ІІІ гидратации, IV - окисления

4. Зона окисления (синонимы: оксидов и гидроксидов, охристая, лимонитовая, оксиднолатеритная аллитная, железная, конечных разложения, продуктов верхняя красная, иллювиальная, элювиальная, бокситовая, железистая, железистая кираса). В ней породы обогащаются окислами железа, иногда алюминия, что придает им красноватый цвет. При отсутствии верхних зон профиль коры называется неполным.

В зависимости от состава коренного субстрата эти зоны слагаются различными минеральными ассоциациями. При выветривании пород ультраосновного состава зоны дезинтеграции и выщелачивания представлены, в основном, серпентинитами, сложенными серпентинами определенных рентгеноструктурных типов.

Зона гидратации сложена нонтронитовыми глинами, а окисления – оксидами русскоязычной железа. Поэтому в литературе при описании кор выветривания, развитых по ультраосновным породам, для большего отражения вещественного состава принято называть эти зоны следующим образом: дезинтегрированных серпентинитов, И выщелоченных нонтронитовой и оксидно-железной зонами.

В заключении четко определим основные используемые в данной работе понятия: под профилем коры выветривания понимается совокупность зон выветривания, развивающихся по определенной горной породе под воздействием гипергенных процессов. Под зоной профиля выветривания

автором понимается часть коры выветривания, обладающая определенным минералого-геохимическим составом, физическими свойствами И структурно-текстурными особенностями характеризующаяся И определенным набором происходящих в ней геохимических процессов. Границы зон выветривания весьма условны и устанавливаются при видимой смене одних выветрелых пород другими или на основании минерального состава этих пород, характеризующегося появлением по всему объему зоны минерала, свойственного следующей стадии выветривании, при этом он может быть не главным, но типоморфным следующему этапу развития профиля выветривания (Вторушин A.B., 1966). Под термином «метасоматит» в работе понимается горная порода, возникшая в зоне гипергенеза в результате взаимодействия просачивающихся растворов с вмещающими их горными породами.

1.2. Сведения об открытии коры выветривания гипербазитов Серовско-Маукского офиолитового пояса.

Первые весьма краткие сведения по геологии изучаемой части Урала даны в работах С. Палласа (1770 г.), А.П. Карпинского (1883 г.) и других исследователей. Наиболее детальное геологическое изучение ее было проведено в период 1894-1900 гг. Е.С. Федоровым и В.В. Никитиным. Результаты этих работ были сведены в монографии «Богословский горный округ» с приложением к ней геологической карты масштаба 1:100 000.

В пределах Серовского района, где расположены изучаемые массивы, предшественники отмечают широкое распространение морских палеогеновых отложений и связанных с ними месторождений марганцевых руд (Марсятское, 1894 г.), из палеозойских образований они выделяют серпентиниты, диабазы и другие горные породы.

Интерес представляют данные о наличии бобово-конгломератовых железных руд в пределах Ауэрбаховского рудника. Небольшое по площади месторождение было разведано в 1885 г., но разрабатывалось оно недолго. В

начале 1900 г., в связи с высоким содержанием хрома, добыча их была прекращена.

Позднее в 1929-1930 гг., когда началось более планомерное геологическое изучение района, на площади Ауэрбаховского участка бобовоконгломератовых руд Д.Д. Топорковым и В.М. Логиновским были проведены дополнительные геологоразведочные работы, в результате которых рудный горизонт был отнесен к меловому возрасту.

В этот же период на площади Богословского горного округа и 1-ой Вагранской лесной дачи, произведена геологическая съемка В.М. Сергиевским, в результате которой впервые были установлены стратиграфические взаимоотношения карбонатных толщ с вулканогенными образованиями, выделено два типа стратиграфических разреза, характерных для западной и восточной частей площади, и составлена геологическая карта масштаба 1:100 000.

С 1932 по 1935 гг. геологосъемочные работы в масштабе 1:50 000 на площади района проводились Г.К. Волосюком, О.В. Лахтионовым и А.Н. Ходалевичем под руководством Е.П. Молдаванцева. В результате этих работ составлена геологическая карта, детально разработаны вопросы стратиграфии среднего палеозоя и установлены основные моменты вулканизма от верхнего силура до среднего девона.

Первые сведения о никеленосности района получены в 1935 г. О.В. Лахтионовым при проведении поисково-съемочных работ масштаба 1:25 000 на Устейском и Кольском серпентинитовых массивах с целью установления на них древней коры выветривания и выявления участков, обогащенных силикатным никелем.

В профиле коры выветривания им были выделены три зоны (снизу вверх): 1) карбонатизации, 2) окремнения и 3) латеритизации. Наибольшие концентрации никеля были отмечены в нижних горизонтах зоны латеритизации (0,4-0,98 %) и в верхней части выщелоченных серпентинитов (0,37-2,18 %).

К числу наиболее перспективных участков О.В. Лахтионов отнес Еловский участок (объект №7), поисково-разведочные работы на котором были выполнены в 1941-1942 гг. А.Е. Мацко. При описании никеленосной коры выветривания он выделил пять геохимических зон (сверху вниз): 1) охр, 2) нонтронитизированных серпентинитов, 3) силицифицированных серпентинитов, 4) выщелоченных карбонатизированных (окремнелых) 5) неизмененных Наиболее серпентинитов И серпентинитов. никеленосными охристо-кремнистые оказались продукты коры выветривания серпентинитов, содержание никеля в них варьируется от 0,4% до 1,01 % (в среднем – 0,64 %), кобальта – 0,03 %-0,05 %, окиси хрома 0,89 % - 1,59 %, железа 22 % - 35 %. Благодаря высокому содержанию хрома они отнесены к забалансовым.

В период с 1940 по 1944 гг. в пределах Замарайской и Катасьминской депрессий, а также в полосе мезокайнозойских отложений, вдоль железнодорожной линии Серов – Ивдель, Н.В. Павловой проводились геологосъёмочные работы с целью оценки марганцевоносности этой полосы. В результате работ составлена сводная геологическая карта масштаба 1:100 000 и дан сводный геологический разрез мезокайнозоя восточного склона Северного Урала и петрографическое описание пород. Железные и никелевые руды в сводной колонке Н.В. Павловой не отмечены.

На площади восточной половины листов 0-41-1-Б и 0-41-1-Г в 1948 г. Н.И. Архангельским и В.П. Мухиной проведена геологическая съемка масштаба 1:50 000. В пределах Кольского массива ими было выявлено широкое площадное распространение древней коры выветривания латеритного типа, содержащей никель и кобальт, определен ее возраст как доверхнетриасовый. Кроме того, в двух пунктах были отмечены бобовоконгломератовые железные руды в озерно-болотных отложениях мелового возраста.

В 1949 г. никеленосная кора выветривания с содержанием от 1,0 до 1,5 % никеля в охристо-кремнистых образованиях по серпентинитам была

обнаружена Е.А. Пантелеевым во время проведения поисковых работ на железные руды в пределах Замарайской депрессии. В отчете по проведенным работам дано строение железо-рудного горизонта, условия его залегания, краткая химическая и минералогическая характеристика руд и дается перспективная оценка рудной зоны. Перспективы месторождения оценивались в 150-200 млн. тонн.

По материалам разведочных работ И.А. Пантелеева проведены технологические исследования железных руд и изучение их вещественного состава. Одновременно с этим были проведены исследования руд Ауэрбаховского участка.

B 1952 г. Уральского Серовская геологоразведочная партия геологического управления при поисках марганцевых руд выявила наличие двух железорудных горизонтов в южной части Замарайский депрессии: 1) осадочных бобово-конгломератовых железных руд и 2) охристых руд, приуроченных к верхней части коры выветривания серпентинитов. Вновы открытый рудный участок лежал на простирании ранее разведанных И.А. Пантелеевым, что открыло перспективы значительного расширения железорудной площади в районе и послужило основанием для постановки здесь широких поисковых работ, в результате которых было установлено, что все отдельные, известные ранее, рудопроявления являются участками одного крупного железорудного месторождения, которое с 1954 г. получило названия Серовского.

Во время проведения поисковых и разведочных работ на железные руды вначале Серовской, а с 1957 г. Воронцовской партией УГУ, в районе Замарайской депрессии древняя кора выветривания была разведана на большой площади. Одновременно с оценкой бобово-конгломератовых железных руд были оценены и охристые руды коры выветривания с точки зрения их никеленосности.

С 1959 г. в пределах Серовского района и прилегающих к нему площадей проводятся широкие поисковые работы на гипергенные никелевые

руды, связанные с корой выветривания гипербазитов Устейского, Кольского и Вагранского массивов. В результате работ было выявлено и разведано шесть участков (объекты №№ 2, 3, 4, 6, 7, 8) с никеленосной корой выветривания, представляющих промышленный интерес.

Поисковые и разведочные работы на железные и никелевые руды одновременно сопровождались изучением их вещественного состава и технологических свойств. Кроме того, проведена работа по изучению роли даек полевошпатовых пород при формировании никеленосных кор и закономерностей никелевого оруденения в преобразованной коре выветривания.

Геологоразведочные работы 1959-1961 гг., выполненные на Кольском серпентинитовом массиве, показали перспективность данного района на наличие месторождений силикатного никеля, связанного с корами выветривания серпентинитов. Это и послужило основой для закономерного изучения геофизическими работами серпентинитовых массивов Серовского района.

Начиная с 1962 г. Воронцовская геофизическая партия, позже переименованная в Северо-Уральскую, приступила к изучению серпентинитовых массивов методами симметричного профилирования, ВЭЗ, магниторазведки и гравиразведки.

Еще в 1958 г. с целью изучения мезокайнозойских отложений при поисках и разведке месторождения бобово-конгломератовых руд, проведены работы методом ВЭЗ по сети 2×0,5 км, а также гравиметровые и магнитные наблюдения по более густой сети в центральной и северной части Замарайской депрессии. В результате работ установлено продолжение Замарайской депрессии в северной части и непосредственная связь ее с Совьвинской депрессией.

В 1962 году проводились комплексные геофизические исследования (СЭП 200×40 м, ВЭЗ, магниторазведка 200×20 м и 10×20 м) с целью поисков карманов, заполненных рыхлыми мезокайнозойскими отложениями, в том

числе и корой выветривания серпентинитов, а также с целью обнаружения и прослеживания зон тектонических нарушений, даек немагнитных пород и зон смятий различного простирания.

В 1963-1965 гг. выполнены ВЭЗ по профилям с шагом наблюдений 250 и 100 м, а также магниторазведка с шагом 50 м с целью определения мощности рыхлых отложений, изучения рельефа палеозоя, уточнения контактов серпентинитов, выделения немагнитных даек на Устейском серпентинитовом массиве и Катасьминской депрессии.

В этот же период на обширной площади с целью картирования выходов серпентинитов на дневную поверхность и зон увеличенной мощности рыхлых отложений выполнены СЭП по сети 50 × 50 м, магниторазведка по сети 500×25 м и ВЭЗ. Этими работами исследованы северная половина Устейского массива, Кольский, Вагранский и Южно-Вагранский серпентинитовые массивы. В результате работ исключены от буровыми работами участки, на которых серпентиниты опоискования выходят на дневную поверхность. В ряде случаев по методу ВЭЗ выделены наиболее перспективные площади на наличие кор выветривания серпентинитов.

Последующие буровые работы показали высокую степень надежности разделения площадей серпентинитовых массивов на участки благоприятные для поисков месторождений силикатного никеля.

В 1966 г. на Еловском участке были проведены детальные работы по выделению площадей с максимальной корой выветривания серпентинитов и немагнитных даек (рис.1.2). Работы выполнялись по профилям через 50 м с шагом наблюдений 2,5; 5; 10 м – магниторазведка, а с шагом 10 м – гравиразведка.

В этом же году в пределах южной части Устейского серпентинитового массива с целью прослеживания трещинно-линейной зоны, заполненной никеленосной корой выветривания серпентинитов по сети 100×25 м проводились магниторазведочные и гравиметровые наблюдения, а

на отдельных профилях участка с шагом 50-100 м – метод ВЭЗ. В результате работ установлено, что по методу ВЭЗ зону развития коры выветривания серпентинитов проследить невозможно, а по гравиразведке эта зона отчетливо прослеживается понижением поля ∆q на величину 0,3-0,5 млг.

В 1967-1969 гг. были продолжены гравиметровые (сеть 200×50 м и 400×50 м) и магниторазведочные работы (сеть 200×25 м и 400×25 м) на площади южной половины Устейского серпентинитового массива с целью поисков трещинно-линейных зон, заполненных корой выветривания, выделения даек немагнитных пород и уточнения местонахождения контактов серпентинитового массива с окружающими породами.

В результате работ выделено 11 аномалий, перспективных на никеленосность. Бурение подтвердило возможность выделения серпентинитов в пределах массива с корой выветривания.

Рис. 1.2. Начало разработки Еловского участка (объект №7) Воронцовской геологоразведочной партией в 1977 г.

1.3 Изученность коры выветривания гипербазитов Серовско-Маукского офиолитового пояса.

Большинство работ по корам выветривания гипербазитов Серовско-Маукского офиолитового пояса было выполнено в 60-70-хх гг. прошлого столетия. Работами Л.И. Кононовой, К.Г. Бородиной, Е.Н. Куземкиной,

В.М. Григорьевой, Н.В. Витовской, А.В. Вторушиным, Н.А. Журавлевой, А.С. Вершининым, Б.М. Михайловым и другими исследователями достаточно подробно изучен минеральный состав коры выветривания на Еловском месторождении (объект №7), но не на современном уровне. Остальные объекты - Катасьминский (№6), Устейский (№8), Вагранский (№2), №3 и №4 с точки зрения минерального состава, строения, условий образования были не изучены или изучены крайне слабо.

Анализируя работы предшественников следует отметить, что А.В. Вторушин, Н.А. Журавлева и В.И. Русский уделяли большое внимание сульфидно-никелевой минерализации коры выветривания (1966 г.), изучению охристой коры выветривания серпентинитов в Катасьминской депрессии (1966 г.). К.Г. Бородиной и Н.Д. Вохмяниной были изучены особенности строения и вещественный состав коры выветривания серпентинитов Еловского участка (1969 г.).

Последние обзорные статьи по никеленосным корам выветривания в пределах рассматриваемой территории были написаны Б.М. Михайловым (2000 г.), В.Г. Лазаренковым, И.В. Таловиной (2000-2010 гг.) и др.

К сожалению, в работах перечисленных исследователей не достаточно глубоко затронуты вопросы, касательно особенностей формирования кор выветривании, участия эндогенных процессов в их формировании. Между тем данный вопрос имеет большое научное и практическое значение.

Еще в 30-е годы прошлого столетия среди российских геологов обозначились две точки зрения на происхождение рудопроявлений кобальтникелевых руд. Одна группа исследователей (И.И. Гинзбург, И.И. Савельев, Н.П. Херасков, Ф.Ф. Сысоев, И.З. Корин, К.К. Никитин, Ю.Ю. Бугельский, И.И. Эдельштейн, А.М. Кудряшов, К.Н. Бородина, И.В. Витовская и другие) утверждали и до сих пор утверждают исключительно экзогенный элювиально-латеритный генезис месторождений гипергенных руд никеля. Другая группа исследователей (В.В. Никитин, А.Н. Алешков, Д.Г. Ульянов, Н.В. Разумова, А.С. Вершинин, Б.М. Михайлов и другие), не возражая против формирования никелеворудных залежей в различных зонах сферы гипергенеза, утверждает их полихронный, полифациальный генезис и участие в этом эндогенных процессов.

Таким образом, перед автором настоящей работы стояли задачи, решение которых способствовало бы понятию истинной природы формирования никеленосной коры выветривания гипербазитов Серовско-Маукского офиолитового пояса.

Выводы по главе 1.

1. Коры выветривания уже на протяжении нескольких столетий изучаются и на территории России и зарубежом. В связи с этим их терминология за это время унаследовала для каждой территории множество характерных особенностей и синонимов. Среди всего многообразия в данной работе принимаются следующие общепринятые понятия: в профиле выветривания гипербазитов традиционно выделяются зоны дезинтегрированных и выщелоченных серпентинитов, нонтронитовая и оксидно-железная, а под зоной профиля выветривания подразумевается часть коры выветривания, обладающая определенным минералого-геохимическим физическими своиствами составом, И структурно-текстурными особенностями и характеризующаяся определенным набором происходящих в ней геохимических процессов. Под термином «метасоматит» понимается горная порода, возникшая в зоне гипергенеза в результате взаимодействия просачивающихся растворов с вмещающими их горными породами.

2. Большинство работ по корам выветривания гипербазитов Серовско-Маукского офиолитового пояса было выполнено в 60-70-х гг. прошлого столетия. Последние крупные статьи в 2000-х годах были посвящены в основном минеральному составу Еловского месторождения. Еще с 30-х годов прошлого столетия существовало две точки зрения относительно вопроса формирования уникальных гипергенных силикатно-никелевых месторождений Урала. Одна группа исследователей была склонна к элювиально-латеритной теории образования, другая – не возражая против

данной теории, утверждала участие эндогенных процессов, в частности термальных вод глубинного заложения. Таким обрпазом, перед автором настоящей работы поставлены задачи, решение которых способствовало бы понятию истинной природы формирования никеленосной коры выветривания в пределах изучаемой территории.

2. ОПИСАНИЕ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ СЕРОВСКО-МАУКСКОГО ОФИОЛИТОВОГО ПОЯСА.

По особенностям геологического строения изучаемая часть Урала делится на две части – западную и восточную. Западная часть сложена, главным образом, вулканогенными, вулканогенно-осадочными и осадочными среднепалеозойского образованиями возраста. Восточная часть характеризуется развитием мощного чехла платформенных осадков мезозоя кайнозоя Западно-Сибирской плиты, перекрывающих и сложно дислоцированный комплекс нижнепалеозойских пород частично И вулканогенные образования среднего палеозоя.

В центральной части района выступают на дневную поверхность и прослеживаются под осадками платформенного чехла изучаемые дунитгарцбургитовые массивы (О1-2) с севера на юг – Устейский, Кольский, Вагранский. Данные массивы входят состав Серовско-Маукского В офиолитового пояса, вытянутого В меридиональном направлении, разделяющего структуры Тагильского мегасинклинория (на западе) и почти платформенными полностью погребенные под осадками структуры Верхотурско-Верхисетского мегантиклинория (на востоке). Серовско-Маукский офиолитовый пояс является северной ветвью пояса офиолитовых массивов Урала.

Ультраосновные породы, формирующие массивы, почти нацело серпентинизированы и прорваны многочисленными дайками основного и среднего состава. В триасовый-юрский периоды по серпентинитам была сформирована кора выветривания (геологические разрезы коры выветривания по объектам приведены в приложении 1), которая вскоре подверглась изменениям в анаэробных условиях при заболачивании территории и воздействии на латериты болотных вод. В ранней юре на территории развития латеритных кор выветривания были образованы депрессии – Сосьвинская, Замарайская и Катасьминская, которые частично сохранили ее от последующего размыва. В ходе мезозойско-кайнозойских глыбовых движений кора выветривания была перекрыта платформенными отложениями.

2.1. Стратиграфия.

Нижнепалеозойская эратема (PZ₁?)

Наиболее древние породы изучаемого района распространены только в пределах Верхотурско-Верхисетского мегантиклинория, слагая его западное крыло. Представлены они амфиболитами, амфиболовыми кварцевобиотитовыми сланцами, реже плагиогнейсами, разгнейсованными диоритами и альбито-хлоритовыми сланцами.

Отнесение данных пород к нижнему палеозою сделано на основании определения абсолютного возраста (Кононова Л.И., 1973) по биотиту из гранодиоритов (объект №7, скв. 2065) и разгнейсованных кварцевых диоритов (скв. 16-г) калий-аргоновым методом. Получены возраста соответственно 376 и 393 млн. лет.

Силурийская система. Венлокский ярус (S₁w).

Образования, представляющие венлокский ярус, распространены только в пределах Тагильского мегасинклинория. Наиболее развиты в югозападной района, они слагают Верхне-Лобвинскую части где брахиантиклиналь. Севернее они прослеживаются в виде меридиональной полосы до р. Волчанки вдоль западной границы серпентинитовых массивов, погружаясь отдельных участках мезо-кайнозойских на под покров отложений.

Венлокские образования представлены преимущественно эффузивами спилито-альбитофировой ассоциации, в состав которой входят кварцевые альбитофиры, андезито-базальтовые диабазовые порфириты, диабазы, спилиты и редко туфы порфиритов.

Нижняя граница этих образований в районе не известна. От более древних пород они отделяются массивами серпентинитов или крупными разрывными нарушениями. Верхняя возрастная граница определяется налеганием на них со стратиграфическим перерывом и угловым несогласием вулканогенных толщ туринской свиты, охарактеризованной фаунистически. Общая мощность венлокских отложений не менее 2000 м.

Верхнелудловский подъярус силурийской системы – жединский ярус нижнего отдела девонской системы.

Туринская свита $(S_2ld_2 - D_1qdtr)$.

На эффузивы венлокского яруса налегают отложения туринской свиты, представленные вулканогенными и осадочно-вулканогенными образованиями трахибазальтовой ассоциации. Они широко распространены в западной части района в ядрах линейных антиклиналей, а восточнее слагают крылья и центральные части брахисинклиналей. В составе ассоциации развиты трахитовые порфиры, трахиандезитовые и трахибазальтовые пироксен-плагиоклазовые порфириты и их туфы, туфопесчаники, туффиты, туфоконгломераты и единичные прослои известняков.

Максимальная мощность свиты 1200 м (в Катасьминской брахисинклинали).

Девонская система.

Девонские образования, имеющие также широкое развитие в районе, слагают, главным образом, центральные части многих синклинальных структур и моноклинали тагильского мегасинклинория. Представлены они двумя отделами: нижним и средним.

По составу пород и особенностям тектонического строения в пределах площади распространения девонских отложений выделяются две структурно-фациальные зоны: петропавловская – вулканогенно-осадочная и турьинская – вулканогенная. Петропавловская зона охватывает западную, а турьинская – восточную часть территории тагильского мегасинклинория. В пределах исследуемого района отмечаются породы только турьинской зоны.

Нижний отдел. Кобленцский ярус (D₁c).

Нижняя часть нижнедевонских отложений, соответствующая жединскому ярусу, ввиду отсутствия критериев для разделения, описана выше совместно с верхним лудловом в составе туринской свиты. Верхняя же их часть, отвечающая кобленцскому ярусу, в Петропавловской зоне представлена маломощной толщей известняков, а в Турьинской зоне с ними параллелизуются мощные накопления вулканогенных пород с прослоями и массивами рифогенных известняков, выделенных в Краснотурьинскую свиту $(D_1 kr)$.

Краснотурьинская свита вмещает все известные в районе месторождения и большую часть рудопроявлений железа и меди контактовометасоматического типа.

Наибольшим развитием в составе свиты пользуются андезитовые, реже андезито-базальтовые и андезито-дацитовые порфириты, их туфы, туфоконгломераты, туфопесчаники и туффиты. В меньшем количестве встречаются известняки.

Краснотурьинская свита объединяет следующие толщи (снизу вверх), выделенные В.М.Сергиевским в 1934 г.:

1) Суворовская толща, согласно залегающая на верхнелудловскожединских вулканитах, сложена туфами, реже роговообманковоплагиоклазовыми андезитовыми порфиритами. Мощность толщи 80-100 м.

2) Фроловско-васильевская толща – массивные конгломератовидные рифогенные известняки, перекристаллизованные вблизи массивов интрузивных пород в мрамора. Местами по ним развиваются скарны, а также медные и железные руды контактово-метасоматического типа. На образования суворовской толщи фроловско-васильевская толща ложится согласно. Мощность толщи 150-550 м.

3) Башмаковская толща сложена тонкопереслаивающимися туфопесчаниками, туффитами и известняками. Залегание толщи на нижележащую согласное с постепенным переходом. Мощность толщи до 250 м.

 Богословская толща слагает верхи краснотурьинской свиты.
 Представлена массивными роговообманково-плагиоклазовыми андезитовыми порфиритами и их туфами. Значительно реже встречаются туфоконгломераты, туфопесчаники и туффиты. Общая мощность краснотурьинской свиты ~ 1400 м.

Средний отдел. Эйфельский ярус (D₂e).

Эйфельский ярус подразделяется на нижнеэйфельский подъярус (D_2e_1) , представленный битуминозными амфиноровыми известняками, которые в фациально замещаются северо-восточном направлении вулканогеннообразованиями, и верхнеэйфельский подъярус $(D_2 e_2)$ осадочными маломощная толща битуминозных слоистых известняков, замещающаяся в северо-восточной половине туффитами, туфопесчаниками, туфоконгломератами и туфами андезит-дацитовых порфиритов.

Мезозойская эратема. Кора выветривания (T₂₋₃-J).

Наиболее древними послепалеозойскими образованиями является кора выветривания. Она развита почти повсеместно на всех палеозойских породах. Кора выветривания представляет собой делювиально-элювиальные глинистые, обычно пестроцветные и глинисто-дресвянистые продукты химического, физического И биогенного процессов выветривания. Первоначально кора выветривания покрывала, по-видимому, всю площадь района, нижняя граница ее опускалась на большую глубину вдоль тектонически ослабленных зон, вдоль контактов разнородных пород и по слоям пород, легче поддающихся выветриванию. В результате последующей эрозии она была сильно размыта и сохранилась только в депрессионных зонах (Замарайской, Катасьминской, Сосьвинской и др.) под покровом мезокайнозойских отложений. Мощность ее непостоянна, в отдельных участках района она достигает 85 м.

Возраст коры выветривания, по общепринятой для Урала схеме, в районе определяется как триас-юрский.

Юрская система. Средний и верхний отделы.

Лангурская свита $(J_{2-3}ln)$.

Образования лангурской свиты развиты в западной части Замарайской депрессии, в районе Белкинского и Каменского месторождений огнеупорных глин.

К отложениям лангурской свиты отнесена мощная толща континентальных образований пестрых по составу и весьма невыдержанных по мощности.

По литологическим особенностям и положению в разрезе эти образования расчленены на два горизонта: нижний и верхний.

Нижний горизонт представлен накоплениями грубообломочных пород кварц-каолинового состава и на поверхности обнажен лишь в центральной части Каменского антиклинального поднятия, слагая его ядро. Внизу горизонта отмечен базальный слой глинистых конгломератов зеленоватосерых, состоящих из галек кварца, диоритов, порфиритов размером от 2 до 8 см, сцементированных песчано-глинистым материалом. Иногда в этом горизонте присутствуют прослои железной конгломератовой руды мощностью до 2 м (с содержанием железа до 32 %).

Отложения верхнего горизонта слагают продуктивную толщу огнеупорных глин. Они представлены довольно однородной толщей каолиновых глин разнообразной окраски, содержащих прослои и линзы сажистых глин, кварцевых песков и песчаников. Среди глин отмечаются прослои сидеритовых песчаников, обломки обугленных растительных остатков и редко прослои бурых углей мощностью до 3 м. Последние не имеют промышленного значения в связи с небольшим площадным распространением.

Мощность юрских отложений достигает 57 м.

Меловая система. Аптский ярус. Алапаевская свита (K₁ apt al).

Стратиграфически выше описанных отложений в Замарайской и западной части Сосьвинской депрессий залегают континентальные осадки, отнесенные по возрасту к алапаевской свите. Они представлены горизонтом светло-серых и белых каолиновых глин с характерным для него обилием крупных обуглившихся обломков древесины, иногда прослоев лигнита мощностью до 0,6 м.

В восточной части района этот горизонт невыдержан, имеет незначительную мощность (до 3 м) и прерывистое распространение, что определяется, по-видимому, последующим размывом. В западной части мощность его увеличивается до 16 м.

В низах горизонта отмечается глина огнеупорная. На отдельных участках глина песчаная с прослоями разнозернистого кварцевого песка, содержащего иногда значительные скопления титаноносных минералов.

Местами в основании глин залегают кварцевые песчаники с шамозитосидерито-хлоритовым цементом, разнозернистые, мощностью до 1,5 м.

Альб-сеноманский ярус. Мысовская свита (K₁ alb-c ms).

Завершающий цикл континентальных образований мезозоя является комплекс отложений, особое место в котором занимает железорудный горизонт. Представлен он бобово-конгломератовыми, бобово-глинистыми и охристо-глинистыми высокохромистыми железными рудами красновато - и желтовато-бурого цвета.

Наряду с рудными прослоями в составе горизонта присутствуют прослои пестроцветных каолиновых глин, часто песчаных, иногда с включением обуглившихся растительных остатков.

Железорудный горизонт В районе имеет не повсеместное распространение. Наиболее развит в пределах Замарайской депрессии, в меньшей степени в западной части Сосьвинской и южной части Ларьковской восточной части Замарайской депрессий. В депрессии мощность железорудного горизонта достигает 38 м, а в западной – не превышает 13 м, составляя в среднем 4-5 м. В западной части в составе горизонта преобладают безрудные фации.

Залегает железорудный горизонт на отложениях апта, а при отсутствии их непосредственно на кору выветривания палеозойских пород.

В западной части Замарайской депрессии среди горизонта бобовоконгломератовых руд отмечаются железистые бокситы.

Железорудный горизонт залегает на глубинах от 30 до 150 м.

Сантонский ярус. Камышловская свита (K₂ snt km)

Камышловская свита включает отложения прибрежно-морских фаций. Она представлена двумя горизонтами – нижним и верхним.

К нижнему горизонту (*K*₂ *snt*₁ *km*) относятся отложения первой морской трансгрессии, представленные, преимущественно, мелкозернистыми кварцевыми и глауконито-кварцевыми песками мощностью от 0 до 35 м.

Для восточной части Замарайский депрессии характерна наиболее мелководная фация – конгломераты. Отложения конгломератов приурочены к небольшой по площади, вытянутой в широтном направлении, впадине в палеозойском фундаменте. Относительное понижение почвы сантона в пределах этой впадины по отношению к остальной части площади достигает 56 м.

Под конгломератом обычно залегает глауконито-кварцевый песчаник или песок, иногда горизонт зеленых глауконитовых глин.

К верхнему горизонту (K_2 snt km) относятся глауконито-кварцевые песчаники с кремнистым или опоковым, реже глинистым цементом, а также мелкозернистые глинистые пески.

Типичной особенностью этой толщи является обогащение ее глауконитом, количество которого на отдельных участках составляет 60-70% породы. Мощность толщи достигает 25 м.

Кайнозойская эратема. Палеогеновая система.

В составе палеогена в пределах района выделяется три самостоятельных трансгрессивных цикла, два из которых относятся к палеоцену (нижний и верхний) и третий – к эоцен-олигоцену.

Возраст отложений палеогена, также как и нижележащих, достаточно определен и датируется диатомовыми водорослями, микрофауной и частично пыльцой.

Нижний палеоцен. Марсятская свита (₽₁mr).

Отложения марсятской свиты представлены аргиллитами серого, иногда зеленовато-серого цвета, плотными, с гнездами и тонкими прослоями глауконито-кварцевого и кварцево-слюдистого тонкозернистого песка.

В основании свиты почти повсеместно развит базальный горизонт, представленный карбонатной марганцевой рудой глинистого, песчаноглинистого и кремнистого типов с массивной, слоистой, конкреционнокремнистой или конгломератовидной текстурой, или фациальнозамещающим ее гравелитом. Мощность слоя марганцевой руды достигает 2,7 м. Мощность отложений марсятской свиты до 60 м.

Верхний палеоцен. Ивдельская свита (₽1 iv).

По площади отложения этой свиты распространены несколько меньше, чем марсятской свиты. Представлены они также аргиллитами, но отличаются от них более темной окраской, меньшей плотностью и наличием тонких светло-серых песчаных прослоев. Иногда наблюдаются прослои сидерита и седиритового песчаника мощностью до 0,3 м. В основании толщи залегания базальный слой, представленный кварцево-глауконитовым песком, песчаником, гравелитом, реже карбонатной марганцевой рудой мощностью до 0,15 м. В восточной части района мелкозернистые слабо глинистые пески достигают мощности 18 м. Мощность свиты достигает в районе 47 м.

Эоцен

По литологическим особенностям, микрофауне и диатомовым водорослям в составе эоцена выделяются две толщи – нижний и верхний эоцен.

Нижний эоцен. Серовская свита (₽₂ sr).

Отложения этой свиты трансгрессивно залегают на всех более древних породах. Представлены они толщей опок серого и темно-серого цвета, иногда песчаной. На западе района в верхней части толщи присутствуют диатомиты. В основании толщи отмечается песчаник, иногда песок и гравий. Мощность опок серовской свиты до 25 м.

Верхний эоцен. Ирбитская свита (₽2 ir).

Опоки и диатомиты серовской свиты вверх по разрезу без следов размыва и несогласия сменяются довольно монотонной и литологически однородной толщей диатомитов. Диатомит светло-серый, легкий, иногда слабо песчаный, местами с гнездами мелкозернистого глауконито-кварцевого песка. Мощность свиты до 100 м.

Нижний олигоцен. Чеганская свита (₽₃ ch).

Выше описанных отложений залегают отложения чеганской свиты, представленные светло-зелеными или зеленовато-серыми глинистыми диатомитами. Характерной особенностью чеганской свиты является наличие прослоев или желваков сидерита и конкреций пирита и марказита.

Отложения чеганской свиты установлены только в северной части района – в Ларьковской депрессии. Мощность свиты достигает 47 м.

Четвертичная система (Q).

К отложениям четвертичного возраста относятся озерно-болотные, аллювиальные и делювиальные образования.

Наиболее древними являются озерно-болотные отложения, представленные серыми, зеленовато- и голубовато-серыми глинами, с включениями вивианита. Мощность до 10 м. Стратиграфически выше залегают аллювиальные отложения, представленные песками, галечниками, реже глинами желтовато-серого цвета. Мощность отложений до 16 м. Делювиальные суглинки и глины, покрывающие водоразделы и их склоны, а также торф, имеют мощность от 5 до 15 м.

2.2. Интрузивный магматизм.

Интрузивные образования в пределах Серовского района занимают большую площадь, составляя в целом около 1000 км². На современном эрозионном срезе они обнажены в западной и частично центральной частях района, на остальной территории перекрыты рыхлыми образованиями мезозоя и кайнозоя (Кононова Л.И., 1973).

Проявления интрузивного магматизма охватывают широкий диапазон времени от позднего силура до позднего палеозоя включительно. На рассматриваемой территории среди интрузивных образований выделяются четыре возрастные группы: позднесилурийская (70 % от общей площади интрузивных массивов), раннедевонская (доли %), среднедевонская (6 %) и позднепалеозойская (23 %).

Наиболее продуктивны в отношении минерагении интрузии среднего девона. С ними связано большинство эндогенных месторождений полезных ископаемых и все контактово-метасоматические месторождения магнетита и меди. К среднедевонским интрузиям отнесены габбро-диориты, диориты, кварцевые диориты, гранодиориты, граниты И породы семейства лампрофиров. Они прорывают вулканогенные и осадочно-вулканогенные толщи кобленцского и эйфельского ярусов. Габбро-диориты слагают небольшие массивы: Верхне-Каменский, Западно-Песчанский. Наиболее крупным является Ауэрбаховский массив, представляющий шток площадью 56 км², центральная часть которого сложена гранодиоритами и кварцевыми диоритами, а краевая – диоритами, переходящими в габбро-диориты.

Второе место по значимости занимают позднесилурийские интрузии. Они представлены пироксенитами, плагиогранитами, габбро, габбродиоритами, диоритами, гранодиоритами и породами жильной серии.

Серпентиниты, распространенные в центральной части района в пределах (с севера на юг) Устейского, Кольского и Вагранского массивов, прорваны многочисленными дайками кварцевых диоритов, диоритов, габбродиабазов и редко плагиогранитов, в контакте с которыми они оталькованы, хлоритизированы, карбонатизированы. С серпентинитами генетически связаны крупные месторождения силикатного никеля, небольшие месторождения хромита и многочисленные проявления асбеста.

Пироксениты развиты в небольших масштабах, они образуют жилы мощностью от нескольких метров до 100-400 м. Располагаются среди серпентинитов или на контакте их с вмещающими породами. В пределах Еловского участка (объект № 7) они являются краевой восточной частью серпентинитового массива.

Рис. 2.1. Схематическая геологическая карта Серовского района с размещением объектов исследования (№№ 2, 3, 4, 6, 7, 8).

Плагиограниты распространены в восточной части Верхне-Лобнинского массива вдоль меридионального течения р. Лобвы, где образуют небольшие штокообразные тела. Жильная фация их представлена плагиогранит-порфирами, кварцевыми альбитофирами, которые в виде даек и жил пронизывают вулканиты венлока, встречаются среди серпентинитов Верхне-Катасьминского массива.

Габбро, диориты и гранодиориты представляют небольшие тела как в южной части района (в верховьях р. Рыбной), так и в северной (севернее д. Ларьковки).

К позднепалеозойским интрузивным образованиям относятся крупнозернистые биотитовые граниты и гранодиориты, залегающие среди нижнепалеозойских метаморфических образований Верхотурско-Верхисетского мегантиклинория.
2.3. Тектоническое строение.

Главными структурными элементами района являются Тагильский мегасинклинорий и Верхотурско-Верхисетский мегаантиклинорий Уральской складчатой области. Мегасинклинорий представлен восточным его крылом, занимающим западную часть района, а мегаантиклинорий – западным, охватывающим пространство восточнее первого. Граница между этими структурами совпадает с субмеридиональным Серовско-Маукским глубинным разломом, в зоне которого развиты аллохтонные пластины серпентинизированных гипербазитов(рис.2.2.).

Рис. 2.2. Схематическая геологическая карта района месторождений Серовской группы (по И.С. Рожкову, 1954, с упрощениями): 1 – отложения палеогена и неогена, 2 – породы триасовой системы, 3 – породы девонской системы, 4 – среднедевонский комплекс интрузий среднего состава, 5 – породы верхнего отдела силурийской системы, 6 – верхнесилурийский комплекс интрузий среднего состава, 7 – среднепалеозойский комплекс интрузий основного состава, 8 – среднепалеозойский комплекс интрузий основного состава, 8 – среднепалеозойский комплекс интрузий основного состава, 10 – тектонические несогласия. Массивы: I – Кольский (Серовский), II – Устейский, III – Вагранский; IV – Дмитриевский диоритовый массив (S₂-D₁), V – Ауэрбаховский габбродиорит-гранодиоритовый комплекс (D₁₋₂); VI – Серовско-Маукский разлом.

Восточное крыло Тагильского мегасинклинория характеризуется сложной складчато-блоковой структурой, обусловленной развитием пологих брахискладок и складок линейного типа, рассеченных и усложненных многочисленными разрывными нарушениями. Основной структурой в зоне мегасинклинория является Турьинская Тагильского брахисинклиналь, крылья которой сложены породами павдинской и туринской свит, а центральные ее части породами краснотурьинской свиты. Ось ее имеет меридиональное направление проходит примерно И ПО центру г. Краснотурьинска.

Восточное крыло Турьинской брахисинклинали в значительной мере перекрыто чехлом рыхлых мезокайнозойских отложений. Самая восточная часть этого крыла сложена вулканогенными образованиями туринской свиты. На крыло обрезано Дмитриевским разрывным востоке ЭТО нарушением, вдоль которого образования туринской свиты контактируют с серпентинитами Кольского массива, а к югу – с породами павдинской свиты. Значительная по площади южная часть восточного крыла Турьинской брахисинклинали Ауэрбаховским массивом занята И Дмитриевским диоритовым массивом, прорывающими образования краснотурьинской и туринской свит. Форма этих массивов штокообразная.

О возрасте Турьинской брахисинклинали данных мало. Наличие в основании туринской свиты размыва и нечеткого углового несогласия (10-15⁰) свидетельствуют о существовании тектонических движений уже перед началом верхнего лудлова и, вероятно, заложении прогиба на месте описываемой брахисинклинали в верхнем лудлове и жедине. Этот прогиб значительно увеличился в кобленцское время, что видно по характеру распределения мощностей краснотурьинской свиты и отдельных ее подъярусов. Окончательное оформление брахисинклинали произошло в послеэйфельское время, скорее всего в верхнем палеозое, когда окончательно был сформирован Уральский коллизионный ороген.

Разрывные нарушения в описываемом районе имеют чрезвычайно большое развитие и, в значительной степени, определяют характер его современной складчато-блоковой структуры. Имея в основном меридиональные или близкие к нему направления, они разделяют Серовский район на ряд меридиональных или почти меридиональных клиновидных блоков. Среди разрывных нарушений выделяются сбросы, взбросы, сбросонадвиги и взбросо-сдвиги. Амплитуды перемещений блоков, направления падений сместителей трудно определяемы из-за плохой обнаженности.

Многие разломы заложены в доинтрузивное время, что видно из приуроченности к ним интрузивов, формы в плане и характере контактов последних с вмещающими их вулканогенно-осадочными породами. В последующее время происходило омоложение разломов, возникновение подвижек вдоль контактов интрузивов с вмещающими породами, приведших к образованию зон дробления и рассланцевания, а у некоторых отмечаются признаки и современных движений.

По значению в общей структуре района разломы можно подразделить на четыре порядка. К первому порядку отнесен глубинный Серовско-Маукский разлом, протягивающийся через центральную часть района. Данный разлом по цепочке почти непрерывных массивов ультраосновных пород трассируется на сотни километров южнее описываемого района, разделяя структуры Тагило-Магнитогорского погружения и Восточно-Уральского поднятия, частью которых являются оказанные выше Тагильский мегасинклинорий и Верхотурско-Верхисетский мегаантиклинорий.

К этой же зоне разлома тяготеют крупные интрузии габбро, диоритов и гранитов. С приближением к центральной части зоны разлома интенсивность дислокаций горных пород сильно возрастает, увеличиваются углы падения слоистости, появляются широкие зоны рассланцевания, повышенной трещиноватости и мелкие разрывы. Наиболее интенсивные движения по разлому происходили, по-видимому, в раннелудловское время, когда внедрились значительные массы гипербазитов.

К структурам второго порядка отнесен региональный Волчанско-Шайтанский разлом, проходящий в западной части района. Он разделяет структурно-фациальные зоны Петропавловскую и Турьинскую. Зона разлома представлена интенсивно рассланцованными и дроблеными породами с крутыми (60°) и вертикальными падениями сланцеватости. По характеру смещения разлом является взбросо-сдвигом с крутым (до 60°) восточным и местами почти вертикальным падением плоскости сместителя.

К структурам третьего отнесена порядка подавляющая часть разрывных нарушений, показанных на картах и являющихся оперяющими по отношению к рассмотренным выше разломам первого и второго порядков. Они характеризуются сравнительно небольшой протяженностью (до первых десятков км), имея при этом иногда значительные (200-2000 м) амплитуды перемещений. Наиболее крупным является Краснотурьинский разлом, от которого ответвляется масса наиболее мелких разрывных нарушений, образующих сложную мелкоблочную структуру Турьинского рудного поля и создают благоприятные предпосылки для формирования многочисленных сложных по форме рудных медносульфидных и магнетитовых тел. Большей частью эти разломы являются взбросами и частично сбросами. Заложение и формирование многих разломов третьего порядка происходило в течение длительного отрезка времени, в значительной мере одновременно и параллельно с интрузивными и рудообразующими процессами. По многим из них подвижки продолжались и после завершения этих процессов. Особенно большими они были в раннем мезозое, когда в районе образовались депрессии Волчанская, Замарайская и другие.

Разрывные нарушения четвертого порядка имеют небольшую величину. По отношению к более крупным разломам они, как правило, являются оперяющими.

В восточной части района развиты платформенные структуры. Здесь выделяются два геолого-структурных этажа: нижний, являющийся кристаллическим фундаментом, и верхний, образующий для первого

платформенный чехол. Кристаллический фундамент сложен главным образом нижнепалеозойскими метаморфическими породами, прорванными позднесилурийскими диоритами и позднепалеозойскими гранитами, образующими северное погребенное продолжение Верхотурско-Верхисетского мегаантиклинория (Соболев И.Д., 1969).

Внутреннее строение мегаантиклинория, перекрытого чехлом платформенных отложений мощностью от нескольких десятков метров до 380 м, выявлено в самых общих чертах по небольшому числу глубоких скважин и данным интерпретации гравиметровой и магнитных карт. В районе выходит лишь западное его крыло, осложненное брахискладчатыми структурами более низкого порядка.

общих Породы рыхлого чехла, повторяя В чертах рельеф кристаллического фундамента, имеют в целом очень пологое падение на северо-северо-восток. В этом же направлении происходит увеличение как общей мощности, так отдельных свит и горизонтов, что свидетельствует об общей тенденции Западно-Сибирской плиты в период их отложений к прогибанию. На этом фоне в платформенном чехле развивается ряд пологих сформировавшихся структур, В связи c блоковыми движениями кристаллического фундамента вдоль разломов. Морфологически они проявляются в виде валов, депрессий, уступов.

В положительных структурах, в сравнении с отрицательными, платформенные осадки имеют обычно меньшие мощности, хорошо выраженные и многочисленные стратиграфические перерывы, осадки морского генезиса в них представлены более грубыми фациями. Колебания мощностей особенно значительны для нижних свит и горизонтов чехла. На некоторых валах платформенные осадки отсутствуют совсем и породы фундамента выступают непосредственно на поверхность.

В районе наиболее отчетливо выделены следующие платформенные структуры: Сосьвинская, Замарайская, Катасьминская и Ларьковская депрессии, Серовский и Волчанский валы, Еловский, Западно- и Восточно-

Катасьминский и Красноярский уступы. Эти структуры относятся к структурам II порядка. Изучаемые никеленосные коры выветривания гипербазитов приурочены к Сосьвинской, Замарайской и Катасьминской депрессиям.

Сосьвинская депрессия расположена в восточной половине Серовского района вдоль р. Сосьвы (рис.2.3). В ее строении принимают участие континентальные отложения альб-сеномана и морские отложения сантоннижнеолигоценового возраста. На западе депрессия через Еловский уступ сочленяется с Серовским валом. Глубина депрессии в сравнении с центральной частью вала 260-330 м.

Рис. 2.3. Геологический разрез Серовского района (по Н.А. Журавлевой, А.В. Вторушину, 1967): 1 – четвертичные отложения; 2 – диатомит, эоцен; 3 – опока, палеоцен; 4 – аргиллит, палеоцен; 5 – песчаник (а) и песок кварцево-глауконитовый (б) (K₂mst); 6 – песок глинистый, кварцево-глауконитовый (K₂snt); 7 – глина лигнитовая (а), руда железная бобово-конгломератовая (б) (K₁₋₂al-sm); 8 – глина каолинитовая (K₁ap); 9 – кварцево-каолинитовая порода (K₁); 10 – кора выветривания гипербазитов (J-T); 11 – серпентинит (PZ); 12 – кварцевый диорит, гранодиорит (PZ); 13 – порфирит (PZ); 14 – толща эффузивно-осадочных пород (PZ); 15 – тектонические нарушения.

В своде Серовского вала, развитого севернее г. Серова, в результате эрозии на поверхность выходят серпентиниты Кольского массива. Чехол платформенных осадков появляется только в крыльях вала и в виде реликтов сохраняется в его сводных частях. Простирание вала меридиональное. Длина его 22 км, ширина 6-8 км. Западное крыло, сложное по конфигурации, имеет наклон на запад под углами в 3-4 °, этим крылом Серовский вал сопрягается с Замарайской депрессией. Восточное крыло вала совпадает с крутым (5-10 °) Еловским уступом. Учитывая широкое развитие в крыльях вала альбсеноманских отложений и его тесную связь с Сосьвинской депрессией, можно полагать, что его оформление в замкнутую положительную структуру произошло в альб-сеноманское время одновременно с заложением депрессии.

Вагранский вал является южным продолжением Серовского и по строению аналогичен последнему. Отделяется от него широтной узкой синклинальной перемычкой южнее г. Серова.

Замарайская депрессия охватывает всю площадь платформенного чехла к западу от Серовского вала (рис. 2.3). Самые древние образования чехла, свидетельствующие о времени заложения структуры, представлены в ней средне-верхнеюрскими отложениями лангурской толщи. Осевая зона депрессии имеет меридиональное простирание, длина ее 20 км, ширина 8-10 км.

Катасьминская депрессия находится на южном продолжении Замарайской (к югу от р. Каквы). Западный ее борт осложнен Западно-Катасьминским. а восточный – Восточно-Катасьминским уступами. Выделенные уступы обладают обычно значительной величиной по протяжению (15-20 км), малой шириной (1-2 км) и выдержанными, крутыми (5-10°), моноклинальными сравнительно углами падения слагающих их пород. Развиваются они обычно вдоль границ платформенных структур, а в фундаменте под ними или вблизи от них имеются разрывные нарушения.

Выводы по главе 2.

1. Интрузивные образования в пределах района занимают площадь около 1000 км². Они представлены диоритами, габбро-диоритами, габбро, гранодиоритами, плагиогранитами, пироксенитами и породами жильной серии. Серпентиниты прорваны многочисленными дайками этих пород, в контакте с которыми они оталькованы, хлоритизированы, карбонатизированы. В связи с этим, обилие даек и общая сильная дробленность положительное пород оказали влияние на скорость формирования коры выветривания и развитие мощных кор в пределах исследуемого района. Более того, интрузивный магматизм определяет

характер никелевого оруденения, что вызывает большой интерес с практической точки зрения.

2. Главными региональными структурными элементами изучаемого района являются Тагильский мегасинклинорий и Верхотурско-Верхисетский мегаантиклинорий Уральской складчатой области. Мегасинклинорий представлен восточным его крылом, занимающим западную часть района, а мегаантиклинорий – западным, охватывающим пространство восточнее первого. Граница между этими структурами совпадает с субмеридиональным Серовско-Маукским глубинным разломом, в зоне которого развиты аллохтонные пластины серпентинизированных гипербазитов, в частности, Устейский, Кольский и Вагранский массивы.

3. Разрывные нарушения в описываемом районе имеют чрезвычайно большое развитие и, в значительной степени, определяют характер его современной складчато-блоковой структуры. Заложение и формирование многих разломов происходило в течение длительного отрезка времени, в значительной мере одновременно и параллельно со складчатыми, интрузивными и рудообразующими процессами. По многим из них подвижки продолжались и после завершения этих процессов. Особенно большими они были в раннем мезозое, когда в районе образовались депрессии: Замарайская, Катасьминская, Сосьвинская и другие.

3. ВЕЩЕСТВЕННЫЙ СОСТАВ, ЗОНАЛЬНОСТЬ И ГЕНЕЗИС КОР ВЫВЕТРИВАНИЯ

Интерес к изучению кор выветривания гипербазитов Серовско-Маукского офиолитового пояса сводится к тому, что они включают как метаморфически измененные породы, так и метасоматические. Поэтому для изучения процессов рудоотложения необходимо изучить вещественный выветривания, составить генетическую классификацию состав коры входящих в нее минералов и, наконец, рассмотреть последовательность преобразования реликтовых минералов субстрата. В данной главе рассмотрены геохимические и минералогические особенности пород коры выветривания, дана сравнительная оценка степени изменения химического состава данных пород, составлена последовательность преобразования реликтовых минералов и приведена генетическая классификация минералов пород коры выветривания гипербазитовых массивов – Кольского, Устейского и Вагранского.

3.1. Фактический материал и методы исследования.

Автором в течение полевых сезонов 2015-2017 гг. проводились полевые работы, сбор каменного материала, описание и документация обнажений, канав, керна скважин. Исследование основано на комплексном минералого-петрографическом и геохимическом изучении гипергенных метасоматических образований, прослеженных на карьере Еловского участка (объект № 7) и в скважинах на объектах №№ 2, 3, 4, 6, 8, пробуренных в 1970-х гг. и частично в 2016 г. Всего было изучено около 150 геологических разрезов, около 500 проб петрологических разностей пород (таблица 3.1). Выделение производилось измененных пород посредством петрографического изучения прозрачных шлифов на микроскопе Leica DM2700 Р с использованием отечественных методик изучения данных образований (400 штук). Для уточнения диагностики минералов применялись микрорентгеноспектральный метод (218 определений) – на растровом **JSM-6510LA** электронном микроскопе с энергодисперсионным

спектрометром JED-2200 (JEOL) в ИГГД РАН (аналитик О.Л. Галанкина), рентгеноструктурный метод (60 определений) – на рентгеновских дифрактометрах фирм XRD 3000 TT и URD-6 в лаборатории Фрайбергской горной академии (аналитик Р. Клиберг), термический метод (40 определений) – на установке STA 429CD+QMS (ИХС РАН, В.Л. Уголков).

Таблица 3.1. Фактический материал, шт.

№ п/п	Объекты	Количество образцов	Количество геологических разрезов
1	Объект №2	80	25
2	Объект №3	80	25
3	Объект №4	80	25
4	Объект №6	80	25
5	Объект №7	100	25
6	Объект №8	80	25

3.2. Химические особенности пород коры выветривания.

Для выявления особенностей химического состава и сравнения степени преобразования пород слагающих кору выветривания гипербазитов на изучаемых объектах $\mathbb{N} \mathbb{N} 2$, 3, 4, 6, 7, 8 были рассчитаны коэффициенты изменения валового химического состава этих пород. Коэффициенты представляют собой отношения содержаний элемента в выветренном горизонте к содержанию этого элемента в субстрате (1) (Алфимова Н.А., 2007). Расчеты производились по семи оксидам: SiO₂, Al₂O₃, Fe₂O₃, FeO, MgO, NiO, CoO. Субстрат, по которому развиты гипергенные образования, представлен серпентинизированным гипербазитом дунит-гарцбургитового состава. Со средними химическими составами пород профилей выветривания на объектах $\mathbb{N} \mathbb{N} 2$, 3, 4, 6, 7, 8, взятых для расчетов по формуле (1), можно ознакомиться в приложении 2.

$$K_{o\kappa cu\partial} = \left(\frac{(K_{\mathfrak{I},\kappa \mathfrak{G}} - K_{\mathfrak{I},cy\delta})}{K_{\mathfrak{I},cy\delta}}\right) \cdot 100, \qquad (1)$$

где К_{эл.кв} – концентрация элемента в выветренном образце из наиболее выветренного горизонта профиля выветривания, К_{эл.суб} – концентрация элемента в субстрате.

В таблицах 3.2-3.7 приведены коэффициенты изменения валового химического состава пород по шести изучаемым объектам (№№ 2, 3, 4, 6, 7, 8).

Таблица 3.2. Изменение химического состава пород при формировании коры выветривания на объекте № 2 (Вагранский), %.

Литологические разновидности пород	K SiO2	K Al2O3	K Fe2O3	K FeO	K MgO	K NiO	К СоО
1.Шамозитизирован ные охры и обохренные серпентиниты	- 67,80	219,46	1217,41	154,01	- 92,02	320,00	809,09
2.Сидерит- магнетит- шамозитовые породы	- 71,54	528,86	613,93	664,71	- 92,77	284,00	1172,73
3.Шамозитизирован ные рыхлые выщелоченные оталькованные нонтронитизирован ные серпентиниты	- 4,82	279,19	282,84	91,98	- 50,30	220,00	300,00
4.Плотные и рыхлые слабо выщелоченные оталькованные серпентиниты	6,19	10,74	145,02	- 31,02	- 38,34	420,00	109,09

Таблица 3.3. Изменение химического состава пород при формировании коры выветривания на объекте № 3, %.

Литологические разновидности пород	K SiO2	K Al2O3	K Fe2O3	K FeO	K MgO	K NiO	К СоО
1.Охры и сильно обохренные серпентиниты и шамозитизированны е разности	- 66,41	237,58	1156,22	203,48	- 94,68	264,00	736,36
2.Шамозитизирован ные нонтронитизирован ные обохренные серпентиниты	- 38,64	289,93	539,30	349,20	- 80,32	320,00	681,82

3.Шамозитовые и магнетит-сидерит- шамозитовые породы	- 52,37	709,40	685,82	650,53	- 92,96	248,00	2081,82
4.Шамозитизирован ные рыхлые выщелоченные тальк- нонтронитизирован ные серпентиниты	8,01	116,78	260,45	72,19	- 53,52	292,00	327,27
5.Плотные слабо выщелоченные тальковые слабо нонтронитизирован ные серпентиниты	1,52	- 12,08	120,65	- 20,32	- 38,43	212,00	63,64
6.Рыхлые слабо выщелоченные тальковые слабо нонтрнитизированн ые серпентиниты	- 6,82	18,79	409,95	- 2,94	- 50,86	308,00	318,18

Таблица 3.4. Изменение химического состава пород при формировании коры выветривания на объекте № 4, %.

Литологические разновидности пород	K SiO2	K Al2O3	K Fe2O3	K FeO	K MgO	K NiO	К СоО
1.Охры и сильно обохренные выщелоченные серпентиниты	- 77,98	142,95	1625,12	- 43,58	-94,80	328,00	1045,45
2.Шамозитизирован ные охры и сильно обохренные выщелоченные серпентиниты	- 72,02	136,91	1279,35	258,82	-94,89	336,00	845,45
3.Шамозитизирован ные нонтронитизирован ные обохренные серпентиниты	- 52,63	209,40	835,32	375,94	- 86,75	300,00	672,73
4.Сидерит- магнетит- шамозитовые породы	- 76,62	269,80	435,07	714,17	-91,28	200,00	845,45
5.Рыхлые выщелоченные тальк- нонтронитизирован ные и шамозитизированны е серпентиниты	- 11,64	420,13	233,33	109,09	- 54,83	208,00	227,27
6.Рыхлые слабо выщелоченные серпентиниты	- 5,61	22,82	150,75	- 63,37	- 41,49	780,00	245,45

Таблица 3.5. Изменение химического состава пород при формировании коры выветривания на объекте № 6 (Катасьминский), %.

Литологические разновидности пород	K SiO2	K Al2O3	K Fe2O3	K FeO	K MgO	K NiO	К СоО
1.Охры и сильно обохренные выщелоченные серпентиниты	- 80,56	128,19	1643,78	5,35	- 92,93	220,00	636,36
2.Охры по окремненным серпентинитам	- 12,80	73,83	868,91	32,62	- 88,27	272,00	345,45
3.Нонтронитизирова нные обохренные серпентиниты	- 17,27	73,15	688,06	32,62	- 69,71	320,00	345,45
4.Рыхлые слабо выщелоченные серпентиниты	- 5,56	26,17	148,76	- 63,37	- 41,70	780,00	245,45

Таблица 3.6. Изменение химического состава пород при формировании коры выветривания на объекте № 7 (Еловский), %.

Литологические разновидности пород	K SiO2	K Al2O3	K Fe2O3	K FeO	К МдО	K NiO	К СоО
1.Охры и сильно обохренные серпентиниты	- 50,38	259,06	1044,28	26,20	- 89,79	380,00	545,45
2.Шамозитизирован ные охры и сильно обохренные серпентиниты	- 63,69	165,10	1232,09	153,48	- 96,41	372,00	563,64
3.Шамозитизирован ные нонтронитизирован ные обохренные серпентиниты	- 35,35	310,74	398,76	495,99	- 89,30	348,00	609,09
4. Шамозитовые и сидерит-магнетит- шамозитовые породы	- 44,72	1104,70	240,30	712,03	- 95,94	180,00	500,00
5.Нонтронитизирова нные обохренные серпентиниты	- 15,61	55,70	707,46	23,53	900,00	536,00	172,73
6.Рыхлые выщелоченные тальк- нонтронитизирован ные и слабо обохренные серпентиниты	4,80	16,78	141,04	- 9,09	- 41,35	444,00	227,27

7.Плотные слабо выщелоченные тальковые,затронут ые нонтронитизацией серпентиниты	7,90	19,46	163,93	- 42,25	-38,43	500,00	127,27
8.Рыхлые слабо выщелоченные затронутые нонтронитизацией серпентиниты	4,80	16,78	141,29	- 9,09	- 41,23	444,00	227,27
9.Выщелоченные оталькованные и окремненные нонтронитизир.серп ентиниты	47,60	- 7,38	100,25	9,09	- 63,92	636,00	90,91

Таблица 3.7. Изменение химического состава пород при формировании коры выветривания на объекте № 8 (Устейский), %.

Литологические разновидности пород	K SiO2	K Al2O3	K Fe2O3	K FeO	K MgO	K NiO	К СоО
1.Шамозитизированн ые и сильно обохренные выщелоченные серпентиниты	- 72,85	304,03	1106,47	286,36	- 91,02	332,00	1036,36
2.Шамозитизиро- ванные выщелоченные нонтронитизированн ые и обохренные серпентиниты	- 43,94	232,21	699,75	325,13	- 80,57	472,00	1009,09
3.Шамозитовые и магнетит-сидерит- шамозитовые породы	- 84,95	328,86	1036,82	531,02	- 92,28	452,00	1390,91
4.Рыхлые слабо выщелоченные тальк- нонтронитизированн ые серпентиниты	- 3,54	- 32,89	203,48	- 16,31	- 25,61	120,00	663,64

Наиболее значимая особенность химического состава пород, слагающих кору выветривания гипербазитов Серовско-Маукского офиолитового пояса, выражается в повышенных содержаниях FeO, Al₂O₃, NiO, CoO в верхних горизонтах профиля выветривания на всех объектах, за исключением единственного профиля выветривания в южной части

Кольского массива, где наблюдается обратная зависимость – в верхних его горизонтах отмечаются пониженные содержания соответствующих оксидов.

Полученные зависимости отражены на рисунках 3.1 – 3.6 в виде кривых линий по каждому изученному объекту.

Рис. 3.1. Изменение содержаний оксидов в породах коры выветривания объекта № 2, %.

Примечание. I – зона дезинтеграции, II – серпентинитовая зона, III – нонтронитовая зона, IV – оксидно-железная зона, V – шамозитовая зона.

На рисунке 3.1 приведены изменения содержаний семи оксидов профиле В объекта № 2. выветривания Анализируя графики, отчетливо наблюдается увеличение содержаний оксидов FeO и Al₂O₃ от зоны дезинтегрированных серпентинитов к зоне охр, что свидетельствует 0 присутствии восстановительного процесса. Кроме того, схожую тенденцию накопления в верхних горизонтах имеют оксиды CoO и Fe₂O₃ с максимальными значениями коэффициентов примерно 1200 % и 1250 % соответственно. Повышенные содержания Fe₂O₃ в верхних и в меньшей степени средних горизонтах коры выветривания отражают процесс вторичного обохривания. Содержания оксидов SiO₂ и MgO от нижних горизонтов к верхним уменьшаются, как это типично при классическом

выветривании. Оксид NiO по разрезу в целом накапливается равномерно.

На рисунке 3.2 видно, что характер изменения содержаний оксидов в профиле выветривания объекта \mathbb{N} 3 в целом аналогичен объекту \mathbb{N} 2. Наблюдается увеличение содержаний оксидов FeO и Al₂O₃ от зоны дезинтегрированных серпентинитов к зоне охр, что свидетельствует об участии восстановительного процесса. От нижних горизонтов к верхним отмечается накопление оксида CoO с максимальным значением в области

Рис. 3.2. Изменение содержаний оксидов в породах коры выветривания объекта № 3, %. Примечание. І – зона дезинтеграции, ІІ – серпентинитовая зона, ІІІ – нонтронитовая зона, ІV – оксидножелезная зона, V – шамозитовая зона.

Рис. 3.3. Изменение содержаний оксидов в породах коры выветривания объекта № 4, %. Примечание. І – зона дезинтеграции, ІІ – серпентинитовая зона, ІІІ – нонтронитовая зона, ІV – оксидножелезная зона, V – шамозитовая зона.

нонтронитовой зоны примерно 2100 %. Максимальное значение содержания оксида Fe_2O_3 наблюдается в зоне охр. Содержания оксидов SiO₂ и MgO от нижних горизонтов к верхним постепенно уменьшаются. Оксид NiO по разрезу в целом накапливается равномерно.

На рисунке 3.3 заметно, что характер изменения содержаний оксидов в профиле выветривания объекта \mathbb{N}_2 3 в целом аналогичен двум предыдущим объектам. Наблюдается увеличение содержаний оксидов FeO и Al₂O₃ от зоны дезинтегрированных серпентинитов к зоне охр, что свидетельствует об участии восстановительного процесса. От нижних горизонтов к верхним отмечается накопление оксида CoO с максимальным значением в области зоны охр примерно 1100 %. Максимальное значение содержания оксида Fe₂O₃ наблюдается также в зоне охр. Содержания оксидов SiO₂ и MgO от

нижних горизонтов к верхним постепенно уменьшаются. Оксид NiO по разрезу в целом накапливается равномерно.

На рисунке 3.4 видно, что характер изменения содержаний оксидов в профиле объекта № 6 соответствует выветривания классическому выветриванию предудыщих объектов И отличается OT низкими содержаниями оксидов FeO и Al_2O_3 в целом по разрезу, то есть исключается участие восстановительных процессов в развитии кор выветривания на данном участке. Максимальные содержания оксида NiO отмечаются в зонах дезинтеграции и выщелачивания. Оксиды CoO и Fe₂O₃ накапливаются в профиле выветривания от нижних к верхним горизонтам. Содержания оксидов SiO₂ и MgO от нижних горизонтов к верхним постепенно уменьшаются.

Рис. 3.4. Изменение содержаний оксидов в породах коры выветривания объекта № 6, %. Примечание. I – зона дезинтеграции, II – серпентинитовая зона, III – нонтронитовая зона, IV – оксидножелезная зона.

Рис. 3.5. Изменение содержаний оксидов в породах коры выветривания объекта № 7, %. Примечание. І – зона дезинтеграции, II – серпентинитовая зона, III – нонтронитовая зона, IV – оксидножелезная зона, V – шамозитовая зона.

На рисунке 3.5 видно, что кора выветривания объекта № 7 имеет самую большую мощность по сравнению с корами выветривания на других

объектах. Наблюдается увеличение содержаний оксидов FeO и Al₂O₃ от зоны дезинтегрированных серпентинитов к зоне охр, что свидетельствует об участии восстановительного процесса. От нижних горизонтов к верхним накапливается оксид CoO с максимальным значением в области зоны охр примерно 600 %. Максимальное значение содержания оксида Fe_2O_3 наблюдается также в зоне охр. Содержания оксидов SiO₂ и MgO от нижних горизонтов к верхним постепенно уменьшаются. Оксид NiO по разрезу в целом накапливается равномерно с максимальными содержаниями в зонах дезинтегрированных и выщелоченных серпентинитов.

Анализируя графики изменения содержаний оксидов в профиле выветривания объекта №8, очевидно, что данный участок был подвержен восстановительному процессу, о чем свидетельствует накопление оксидов FeO и Al₂O₃ в верхних горизонтах (рис. 3.6).

Рис. 3.6. Изменение содержаний оксидов В породах коры выветривания объекта № 8. Примечание. II – серпентинитовая зона, III нонтронитовая IV зона, оксидно-железная зона, V шамозитовая зона.

Схожую тенденцию накопления в верхних горизонтах имеют оксиды CoO и Fe₂O₃ с максимальными значениями коэффициентов примерно 1300 % и 1100 % соответственно. Повышенные содержания Fe_2O_3 . ярко вырженные в верхних и средних горизонтах коры выветривания, отражают процесс обохривания. вторичного Содержания оксидов SiO₂ и MgO от нижних горизонтов к верхним постепенно уменьшаются, как это типично при классическом выветривании. Оксид NiO по разрезу в целом накапливается равномерно.

Таким образом, анализируя графики изменения содержаний FeO, Fe₂O₃, Al₂O₃, SiO₂, NiO, CoO, MgO в корах выветривания

на объектах №№ 2, 3, 4, 6, 7 и 8 можно сказать, что по изменению содержаний FeO и Al_2O_3 отчетливо выделяется кора выветривания на объекте №6, в которой наблюдаются очень низкие значения содержаний данных оксидов по всему разрезу в сравнении с другими объектами.

Высокие содержания FeO и Al_2O_3 в верхних горизонтах профиля выветривания свидетельствуют об участии восстановительного процесса в истории развития кор выветривания. Следовательно, формирование кор выветривания на объектах №№ 2, 3, 4, 7, 8 и объекте № 6 происходило не одинаково при схожих условиях – состав и возраст субстрата на всех изучаемых объектах идентичен.

В таблице 3.8 приведена сводная сравнительная характеристика изменений химического состава пород из наиболее выветренного горизонта коры выветривания по шести объектам №№ 2, 3, 4, 6, 7, 8. Коэффициенты были расчитаны по породам с одной стороны максимально подвергнутых воздействию наложенного процесса шамозитизации (подробнее данный вопрос описан в разделе 4.2) и с другой стороны - не затронутых процессами последующего окисления и переотложения. Таким образом, расчеты были произведены по шамозитизированным нонтронитизированным породам, в составе которых присутствовали также сидерит и магнетит. В случае коры выветривания на объекте № 6 расчеты были произведены по породам из нонтронитизированной зоны.

Таблица 3.8. Изменение химического состава дунит-гарцбургитовых пород при формировании кор выветривания гипербазитов Серовско-Мауского офиолитового пояса, %.

№	Кора выветрива ния	Место расположения	Морфология коры выветривания	Генезис	Зона КВ*	K FeO	K Fe ₂ O ₃	K Al ₂ O ₃	K NiO	K CoO	K SiO ₂	K MgO
1	Объект № 2 (Вагрански й)	Вагранский массив	Площадная	Инфильтраци онно- метасоматиче ская	Шамози товая нонтрон итовая	664,71	613,93	528,86	284,00	1172,73	-71,54	-92,77
2	Объект № 3	Западная часть Кольского массива (Замарайская депрессия)	Площадно- линейная	Инфильтраци онно- метасоматиче ская	Шамози товая нонтрон итовая	650,53	685,82	709,40	248,00	2081,82	-52,37	-92,96
3	Объект № 4	Западная часть Кольского массива (Замарайская депрессия)	Площадно- линейная	Инфильтраци онно- метасоматиче ская	Шамози товая нонтрон итовая	714,17	435,07	269,80	200,00	845,45	-76,62	-91,28
4	Объект № 6 (Катасьмин ский)	Южная часть Кольского массива (Катасьминская депрессия)	Линейная	Остаточная	Нонтрон итовая	32,62	688,06	73,15	320,00	345,45	-17,27	-67,71
5	Объект № 7 (Еловский)	Восточная часть Кольского массива (Сосьвинская депрессия)	Площадно- линейная	Инфильтраци онно- метасоматиче ская	Шамози товая нонтрон итовая	495,99	398,76	310,74	348,00	609,09	-35,35	-89,30
6	Объект № 8 (Устейский)	Устейский массив	Площадная	Инфильтраци онно- метасоматиче ская	Шамози товая нонтрон итовая	531,02	1036,82	328,86	452,00	1390,91	-84,95	-92,28

Примечание. * - КВ – кора выветривания, расчет процентного соотношения элементов производится по следующей формуле: Изменение содержания элемента Коксид=[(Кэл.кв – Кэл.суб)/ Кэл.суб]·100, где Кэл.кв – концентрация элемента в выветренном образце из шамозитированной нонтронитизированной / нонтронитизированной зоны, Кэл.суб – концентрация элемента в субстрате.

3.3. Минеральный состав и зональность кор выветривания.

По результатам геологических и минералого-петрографических исследований в строении изучаемых профилей выделяются серпентинитовая, нонтронитовая, оксидно-железная, a также шамозитовая зоны (3a исключением объекта № 6, где шамозитовая зона не обнаружена). Переход от одной зоны к другой постепенный, резких границ не наблюдается. Только шамозитовая зона отчетливо выделяется на профиле выветривания по темносинему (до черного) окрасу слагающих ее пород, в которых главный породообразующий минерал – железистый хлорит шамозит (Илалова Р.К., 2016) (рис. 3.22, 3.23, 3.24).

минералого-петрографические профилях Выделенные зоны В выветривания отражают физические и химические процессы образования (снизу-вверх): дезинтеграции, выщелачивания, гидратации, окисления и шамозитизации (наложенный процесс). При описании кор выветривания для большего отражения вещественного состава принято называть эти зоны следующим образом: дезинтегрированных и выщелоченных серпентинитов, нонтронитовой (глинистой), оксидно-железной и шамозитовой зонами (рис.3.7). В данной работе каждой зоне соответствует собственное название разновидности (гипергенных пород метасоматитов И остаточных образований), в соответствие с которыми приведены их минеральные рановидности. Для этого составлена их классификационная схема (Таблица 3.9).

Таблица 3.9. Классификационная схема гипергенных пород из коры выветривания гипербазитовых массивов Серовско-Маукского офиолитового пояса (по И.В. Таловиной, 2012 с дополнениями).

Зона	Происходящий	Разновилиости пород	Минеральные
выветривания	процесс	тазновидности пород	разновидности
			Шамозитовые, миллерит-
	Шамозитизация		бриндлейит-
IIIanopuropag		Шамозитовые породы	шамозитовые, клинохлор-
шамозитовая			бертьерин-шамозитовые,
			шамозит-лизардитовые,

Оксидно- железная	Окисление	Гетитовые породы	Гетитовые, кварц-гетитовые, клинохлор-гетитовые
Нонтронитовая	Гидратация	Нонтронитовые породы	Нонтронитовые, талько- хлорит -нонтронитовые
Серпентинитовая	Выщелачивание	Лизардитовые породы	Клинохлор-тальк- лизардитовые, непуит- кварц-лизардитовые, клинохлор- пеннин - лизардитовые
	Дезинтеграция	Хризотиловые породы	Клинохлор-хризотиловые, тальк-хризотиловые, диабантит-брунсвигит- пикнохлорит- хризотиловые

В приведенной классификационной схеме жирным выделены впервые обнаруженные автором смешаннослойные образования и хлориты по Хею (Hey M.H., 1954) (их описание приведено в разделе 4.3).

Рис. 3.7. Сводный профиль коры выветривания гипербазитов Серовско-Маукского офиолитового пояса (по И.В. Таловиной, 2012 с дополнениями)

Вертикальный профиль древней остаточной коры выветривания

В древнем остаточном типе коры выветривания наблюдается вертикальная зональность (снизу вверх): серпентинизированные гипербазиты (субстрат) – серпентинитовая зона – нонтронитовая зона – оксидно-железная зона (рис. 3.8).

Нонтронитовые метасоматиты, которые локализуются в нонтронитовой зоне не получили описания в данной работе, так как имеют весьма ограниченное распространение, либо совсем отсутствуют.

Рис. 3.8. Вертикальный профиль древней остаточной коры выветривания (по И.В. Таловиной, 2012 с дополнениями)

1 – серпентинизированные гипербазиты (дуниты, гарцбургиты);

2-карбонатизированные серпентиниты;

3 – диабантит-брунсвигит-пикнохлорит-хризотиллизардитовые метасоматиты;

4 – непуит-хризотил-лизардитовые метасоматиты;

5 – клинохлор-пеннин-тальковые метасоматиты;

6 – нонтрониты, талькохлорит-клинохлоровые нонтронитизированные серпентиниты;

7 – кварц-гётитовые остаточные образования;

8, 9-жильные тела.

Зоны:

I – серпентинитовая;

II – нонтронитовая;

III – оксидно-железная;

1. Серпентинитовая зона

Серпентинитовая зона в профиле коры выветривания занимает самые нижние горизонты и включает два главных типа рудоносных метасоматитов: хризотил-лизардитовые и непуит-хризотил-лизардитовые метасоматиты. В составе данных метасоматитов впервые были выявлены хлориты по Хею (Hey M.H., 1954) – пеннин, пикнохлорит, брунсвигит, диабантит, используя микрорентгеноспектральный метод исследования. Описание данных хлоритов приведено в разделе 3.3.

Хризотил-лизардитовые метасоматиты развиты В нижних горизонтах и образуют, как правило, плащеобразные залежи мощностью до 25-30 м (рис.3.9). В верхней части зоны они представлены полурыхлыми, трещиноватыми, дезинтегрированными, обохренными сильно серпентинитами буровато-серого и зеленовато-серо-бурого цвета. В нижней части – более плотными, трещиноватыми, карбонатизированными, светлосерыми, голубовато-серыми и буровато-зелено-серыми серпентинитами. В хризотил-лизардитовых метасоматитах по трещинам развита сульфидная минерализация. Основным сульфидным минералом является миллерит, реже пирит, халькопирит и пирротин. Данные сульфиды довольно часто в своем составе содержат никель.

Рис. 3.9. Хризотил-лизардитовые метасоматиты в карьере объекта № 7 (Еловский). Центральная часть карьера на восточном борту Кольского массива.

Хризотил-лизардитовые метасоматиты подстилаются плотными мелкозернистыми карбонатизированными серпентинитами темно-серого, зеленовато-серого и темно-зеленого цветов.

Макроскопически лизардит представляет собой плотные мелкозернистые до скрытокристаллических агрегаты (рис. 3.10).

Под поляризационным микроскопом в составе хризотил-лизардитовых метасоматитов определяются количественно преобладающий серпентин, реликтовые оливин, ортопироксен и хромит, тальк, хлорит, кальцит, магнетит, гётит, миллерит.

Рис. 3.10. Плотный тонкозернистый агрегат никелевого лизардита (голубоватозеленое) и лизардита (белое).

По данным проведенного рентгеноструктурного анализа хризотиллизардитовые серпентиниты на 45-90 % сложены алюминиевым лизардитом 6T и 1*T*, никелевым лизардитом 1M, хризотилом 2ORC1 и 2MC1 (от 10-20 % до 35 %). В некоторых образцах встречается пекораит 2MC1 в количестве до 40 %. В качестве второстепенных минералов отмечаются тальк (10-20 %), сапонит (10-20 %), клинохлор (5 %), виллемсит (5 %), гётит (от 5-10 % до 30 %), кварц (от 1-5 % до 15 %). Также встречаются миллерит, флогопит, ортоклаз, анортит, сауконит, тремолит, хромит, паргасит, горнблендит.

Дифрактометрическая кривая лизардита соответствует эталонным по ICPDF, все они в общих чертах однотипны (рис. 3.11).

Рис. 3.11. Дифрактометрическая кривая лизардита из серпентинитовой зоны коры выветривания (образец Сер 10-8-А).

В таблице 3.10 представлены индексы отражений, по которым диагностировался лизардит из серпентинитовой зоны коры выветривания.

Таблица	3.10.	Данные	рентгеноструктурного	анализа	лизардитов	ИЗ
серпентин	итовой	зоны кор	ы выветривания			

				L		L			
Лизар,	дит 1T	Лизар,	дит 1T	Лизар,	дит 1T	Лизар,	дит 6T	Лизард	цит 1M
1	1		2	3		4		5	
d	Ι	d	Ι	d	Ι	d	Ι	d	Ι
7,321	100	7,352	100	7,352	100	7,303	100	7,316	100
4,588	25	4,578	12	4,578	12	4,561	20	4,591	23
3,881	7	-	-	-	-	4,022	5	-	-
-	-	-	-	-	-	-	-	-	-
3,645	83	3,644	90	3,644	90	3,648	56	3,633	70
2,647	17	-	-			2,651	3	2,648	19
2,494	72	2,496	30	2,496	30	2,501	17	2,444	34
-	-	2,442	20	2,442	20	2,443	15	-	-
2,292	8	-	-	-	-	2,334	3	2,298	12
2,142	26	2,146	12	2,146	12	2,152	6	2,147	22
1,824	6	1,826	6	1,826	6	1,974	2	-	-
1,787	13	1,792	8	1,792	8	-	-	1,792	12
1,737	11	-	-	-	-	-	-	1,738	12
-	-	-	-	-	-	-	-	1,693	7
1,531	67	1,533	31	1,533	31	-	-	1,533	63
1,501	38	1,502	17	1,502	17	-	-	1,502	36
Cep 1	0-8A	Cep	32-1	Cer	o 44	Cep	133.4	E	23

Примечание: 1-5 – образцы из серпентинитовой зоны коры выветривания.

Дифрактометрическая кривая хризотила соответствует эталонным по ICPDF, все они в общих чертах однотипны (рис. 3.12).

В таблице 3.11 представлены индексы отражений, по которым диагностировался хризотил из серпентинитовой зоны коры выветривания.

Таблица 3.11. Данные рентгеноструктурного анализа хризотилов из серпентинитовой зоны коры выветривания

1		2		
d	d I		Ι	
7,286	100	7,316	100	
4,572	4,572 28		23	
3,655	62	3,633	70	
-	_	2,648	19	

2,592	34	2,587	20	
2,501	53	2,540	35	
2,442	33	2,444	34	
2,278	16	-	-	
2,208	14	-	-	
1,974	5	2,086	13	
1,528	52	1,533	63	
1,461	10	-	-	
E-08	8-20	Cep-32-1		

Примечание: 1, 2 – образцы из серпентинитовой зоны коры выветривания.

Рис. 3.12. Дифрактометрическая кривая хризотила из серпентинитовой зоны коры выветривания (образец Сер 10-4).

Непуит-хризотил-лизардитовые метасоматиты в профиле коры выветривания находятся в верхних частях серпентинитовой зоны (рис.3.13). Макроскопически представляют собой обохренный, иногда окремненный горизонт плотных трещиноватых и рыхлых «щебнистых» серпентинитов серо-зеленого, буровато-коричневого и буровато-зеленого оттенков с прожилками и гнёздами ярко-сине-зеленых, изумрудно-зеленых и светлозеленых цветов (рис.3.14, рис.3.15). Данный тип метасоматитов в коре выветривания имеет первоочередное значение, поскольку является

высокорудоносным. Непуит-хризотил-лизардитовые метасоматиты наиболее выражены в окремненном профиле коры выветривания, зона имеет непостоянную мощность и колеблется в интервале от 0,5 до 16 м.

Рис. 3.13. Непуит-хризотил-лизардитовые метасоматиты. Северо-восточный борт карьера на объекте № 7 (Еловский).

Рис. 3.14. Непуит-хризотил-лизардитовые рудоносные метасоматиты.

Под поляризационным микроскопом в составе непуит-хризотиллизардитовых метасоматитов определяются минералы группы серпентина (хризотил, лизардит, непуит), реликтовый хромит, а также вторичные минералы – хлорит, кальцит, тальк, гётит.

Рис. 3.15. Непуит-хризотил-лизардитовые руды: а – прожилки, б – гнезда.

Дифрактометрическая кривая непуита соответствует эталонным по ICPDF (рис.3.16).

Рис. 3.16. Дифрактометрические кривые непуитов из серпентинитовой зоны коры выветривания (образец Сер-10-4).

В таблице 3.12 представлены индексы отражений, по которым диагностировался хризотил из серпентинитовой зоны остаточного типа коры выветривания.

Таблица 3.12. Данные рентгеноструктурного анализа непуитов из серпентинитовой зоны коры выветривания.

1		2		
d	Ι	d	Ι	
7,303	100	7,32	3	
4,469	10	_	-	

-	-	-	-
3,620	48	3,62	2
-	-	-	-
2,877	13	2,89	0
2,701	23	-	-
2,599	8	2,59	1
2,523	54	2,49	2
2,409	8	-	-
2,208	13	2,20	1
2,126	15	2,13	9
2,008	4	-	-
-	-	1,82	22
-	-	1,53	3
_	-	1,50	1
_	_	_	-
-	-	1,38	9
_	_	_	-

Примечание: 1, 2 – образцы из серпентинитовой зоны коры выветривания.

2. Оксидно-железная зона

Оксидно-железная зона профиле остаточного коры В типа выветривания, занимая верхние горизонты, имеет повсеместное Породы оксидно-железной распространение. В зоне представлены гётитовыми охрами массивной текстуры (рис.3.17). Гётитовые породы представляют собой легкие и сыпучие, иногда плотные (вторично ожелезнение) породы, коричневато-желтого, желтовато-бурого цветов (рис. 3.18). В своем составе данные породы часто содержат кварц, и тогда мы имеем кварц-гетитовой дело с его разновидностью. Границы распространения представленых пород определяются химическими анализами, так как макроскопически они слабо отличаются от кварцгётитовых и магнетит-кварц-гётитовых разностей.

Рис.3.17. Гетитсодержащая порода из оксидно-железной зоны коры выветривания.

Рис. 3.18. Гётитовые охры. Южный борт карьера объекта № 7 (Еловский).

Главным породообразующим и рудообразующим минералом охр является гётит, находящийся иногда в смеси с гематитом, обохренным серпентином и обохренным нонтронитом, которые вместе составляют от 50 до 71 %. В охрах иногда в значительных количествах содержится магнетит. Из других минералов могут присутствовать хромит, тальк, хлорит, миллерит, каолинит, сидерит, пирит, кальцит, кварц, гидроокислы марганца.

В верхних горизонтах коры выветривания гётит слагает мощные плащеобразные покровы. В нижних горизонтах – может замещать карбонаты и вытеснять кварц и халцедон в окремненных участках и отлагаться по трещинам и пустотах в виде прожилков, жеод и колломорфных образований разнообразной формы и мощности.

Общая мощность охр и интенсивно обохренных серпентинитов достигает 20-30 м.

Под поляризационным микроскопом структура исходных пород различается достаточно плохо, из-за высокого содержания бурых пелитоморфных гидроокислов железа.

Вертикальный профиль преобразованной инфильтрационнометасоматической (шамозитовой) коры выветривания

В вертикальном профиле преобразованного типа коры выветривания наблюдается похожая гипергенная метасоматическая зональность, как и в профиле остаточного типа коры выветривания, но с отчетливым выделением дополнительной шамозитовой зоны. Она имеет ограниченное распространение в вертикальном профиле коры выветривания и замещает, либо оксидно-железную, частично, полностью нонтронитовую И серпентинитовую зоны (рис. 3.19).

Рис.3.19. Вертикальный профиль преобразованной инфильтрационно-метасоматической (шамозитовой) коры выветривания (по И.В. Таловиной, 2012 с дополнениями).

- 1 серпентинизированные гипербазиты;
- 2-карбонатизированные серпентиниты;
- 3 диабантит-брунсвигит-пикнохлорит-хризотил-
- лизардитовые метасоматиты;
- 4 непуит-хризотил-лизардитовые метасоматиты;

5-клинохлор-пеннин-талько-шамозитовые метасоматиты;

6 – нонтрониты, пеннин-талькохлорит-нонтронитшамозитовые серпентиниты;

7-8 – шамозитовые метасоматиты;

9 – клинохлор-бриндлейит-бертьерин-шамозитовые метасоматиты;

10 –жильные тела.

Зоны: I – серпентинитовая; II – нонтронитовая; III – оксидно-железная; IV – шамозитовая зона.

В результате кропотливого изучения образцов были выделены следующие важные типы метасоматитов: серпентинитовые (непуитхризотил-лизардитовые, хризотил-лизардитовые), хлоритовые (шамозитовые, клинохлор-бриндлейит-шамозитовые, клинохлор-тальк-шамозитовые, клинохлор-бертьерин-шамозитовые). В составе данных метасоматитов также как и в остаточном типе коры выветрвиания впервые были выявлены хлориты по Хею (Неу М.Н., 1954) – пеннин, пикнохлорит, брунсвигит, диабантит, используя микрорентгеноспектральный метод исследования.

В ходе изучения метасоматитов из шамозитовой зоны впервые были выявлены и изучены смешаннослойные силикаты – бриндлейит и бертьерин. Их описание приведено в данном разделе.

Шамозитовая зона представлена рудоносными метасоматитами существенно хлоритового состава. Макроскопически она сложена рыхлыми, сыпучими и шероховатыми на ощупь породами своеобразной голубоватозеленой, голубовато-серой или грязно-серой до черного окраски, отличной от окраски, свойственной породам из различных зон выветривания. Породы этого горизонта распространены не повсеместно, а глубина проникновения их вниз по разрезу коры выветривания изменяется от 0,5 до 30 м (рис.3.20, рис.3.21).

Зона шамозитизации представлена четырьмя основными типами рудоносных метасоматитов: собственно шамозитовым, клинохлорбриндлейит-шамозитовым, клинохлор-бертьерин-шамозитовым и клинохлортальк-шамозитовым.

Рис.3.20. Структурный и стратиграфический контакт: осадочные породы Сосьвинской депрессии (верхняя часть) горизонтально залегают на шамозитовые метасоматиты (нижняя часть). Восточный борт карьера объекта № 7 (Еловский).

Рис. 3.21. Зона шамозитизации. Северо-восточный борт карьера объекта № 7 (Еловский).

Руды шамозитовых метасоматитов, имеющие инфильтрационноналоженное происхождение, слагают как плащеобразную, так и жильную форму рудных тел, таким образом, наследуя морфологию первичных для них нонтронитовых, серпентинитовых метасоматитов, а также жильных пород месторождения.

Рассмотрим более подробно только шамозитовую зону профиля выветривания, поскольку серпентинитовая зона по вещественному составу будет такой же как в остаточном типе коры выветривания в связи со схожестью материнского субстрата.

Зона шамозитизации

Зона шамозитизации на изучаемых объектах представлена четырьмя главными типами рудоносных метасоматитов: шамозитовым, бриндлейит-клинохлор-шамозитовым, бертьерин-клинохлор шамозитовым и клинохлор-тальк-шамозитовым.

Рудные разности выщелоченных хлоритовых пород представляют собой рыхлые сыпучие образования голубовато-зеленого, голубовато-серого, грязно-серого до черного цветов (рис.3.22). По данным микрорентгеноспектрального анализа они в основном сложены клинохлором (табл. 3.13) и шамозитом (табл. 3.14). Взаимоотношение клинохлора и шамозита представлено на рисунке 3.23. Помимо данных минералов может присутствовать тальк (до 25-30%) и тогда рудные разности относятся к

клинохлор-тальк-шамозитовым рудам. Помимо выше перечисленных минералов может встретиться бриндлейит (табл. 3.15), тогда данная разность относится к бриндлейит-клинохлор-шамозитовым рудам. Когда в составе породы присутствует бертьерин, тогда данная разность относится к бертьерин-клинохлор-шамозитовым рудам. Кроме образцах того. В содержатся кварц (5-10%) и халцедон, реже встречаются нимит, пеннантит, а также в небольших количествах – гётит, нонтронит, магнетит, хромит, сидерит, нонтронитизированный серпентин.

Рис. 3.22. Шамозитовые метасоматиты из профиля выветривания объекта № 7 (Еловский).

Рис. 3.23. Взаимоотношение клинохлора и шамозита в шамозитовых метасоматитах из профиля выветривания объекта № 7 (Точки 2,4,5 – клинохлор, точки 1,3 - шамозит).

Комп.	1	2	3	Среднее
SiO ₂	48,89	42,30	40,33	43,84
Al_2O_3	17,94	22,61	18,39	19,65
FeO	3,58	6,00	1,32	3,63
MnO	1,19	0,13	0,00	0,44
MgO	24,77	21,96	37,72	28,15
NiO	3,36	7,00	2,23	4,19
CoO	0,27	0,00	0,00	0,09
Сумма	100,00	100,00	100,00	100,00

Таблица 3.13. Состав клинохлора по данным микрорентгеноспектрального анализа, масс. %.

Примечание. 1,2,3 – образцы из объекта № 7.

Таблица 3.14. Состав шамозита по данным микрорентгеноспектрального анализа, масс. %.

Комп.	1	2	3	4	5	6	7
SiO ₂	29,43	28,95	32,60	33,61	34,62	35,41	36,13
TiO ₂							
Al_2O_3	19,81	19,41	16,41	19,49	18,16	17,50	18,14
Fe ₂ O ₃							
FeO	36,50	37,06	29,80	27,93	27,29	25,05	25,41
MnO	0,94	0,56	0,65	0,34	0,78	1,51	0,36
MgO	11,77	12,01	12,62	18,64	17,87	20,54	18,76
CaO							
Na ₂ O							
K ₂ O							
P_2O_5							
NiO	1,44	1,82	7,91	0,00	1,28	0,00	1,20
CoO	0,10	0,00	0,00	0,00	0,00	0,00	0,00
Cr_2O_3							
H_2O^-							
H_2O^+							
П.П.П.							
CO_2							
Pd	0,00	0,19	0,00	-	-	-	-
Сумма	100,0	100.0	100.0	100.0	100.0	100.0	100.0

Примечание. 1-7 – образцы из объекта № 7.

Приведем более подробное описание впервые обнаруженных в шамозитовой зоне профиля выветривания смешаннослойных силикатов – бриндлейита и бертьерина.
Бриндлейит Ni_{3,5}Al₃Si₃O₁₀(OH)₈ – алюминийсодержащий минерал группы серпентина (алюминиевый серпентин?), никелевый аналог бертьерина (Fe²⁺,Fe³⁺,Al,Mg)₂₋₃(Si,Al)₂O₅(OH)₄. Обнаружен автором впервые в составе шамозитовой руды из объекта №7 (рис. 3.24). Химический состав бриндлейита представлен в таблице 3.15.

Средний состав бриндлейита, пересчитанный на кристаллохимическую формулу – (Mg_{2,84}Fe_{0,14}Ni_{1,72}Al_{0,9})_{5,78}[Si₄O₁₀](OH)₈.

Таблица 3.15. Состав бриндлейита по данным микрорентгеноспектрального анализа, масс. %.

Комп.	1	2	3	Среднее
MgO	16,37	14,99	14,83	15,40
Al ₂ O ₃	37,10	26,41	33,14	32,22
SiO ₂	6,51	21,60	14,68	14,27
FeO	0,03	1,95	0,34	0,77
NiO	40,00	35,05	37,01	37,35
Сумма	100,00	100,00	100,00	100,00

Примечание. 1-3 – образцы из объекта № 7 (Еловский).

Рис. 3.24. Бриндлейит (37,0 вес.% NiO) в бриндлейит-клинохлор-шамозитовых никелевых рудах.

Дифрактометрические кривые бриндлейита соответствуют эталонным по ICPDF (рис. 3.25).

Рис. 3.25. Дифрактометрические кривые ожелезненных бриндлейит-талькклинохлоровых метасоматитов из объекта № 7 (Еловский).

Приведем подробное описание безникелевого аналога бриндлейита – бертьерина.

 $[(Fe^{2+},Mn^{2+},Mg)_{3-x}(Fe^{3+},Al)_x(Si_{2-x}Al_x)O_5(OH)_4]$ Бертьерин алюминийсодержащий минерал группы серпентина (алюминиевый серпентин?). По результатам изучения образцов из оксидно-железной зоны был обнаружен профиля выветривания ОН В трещинах (рис.3.26) хромшпинелидов. Хромшпинелиды отличаются зональностью OT периферии к центру зерна наблюдается замещение хромшпинелида гематитом.

Данный минерал хорошо определяется по термическому анализу. На термогравиметрической кривой выделяются различные пики дегидратации, однако основной пик приходится на интервал температур от 450 до 510°C, соответствующий бертьерину (рис.3.27). В отличие от бертьерина дегидратация каолинита и магнезиального серпентина происходит в интервалах температур 520-620 °C и 600-800 °C соответственно.

Рис. 3.26. Зерно хромшпинелида с трещинами и зональностью.

Рис. 3.27. STA-диаграмма образца из оксидно-железной зоны.

Дифрактометрическая кривая бертьерина соответствует эталонным по ICPDF (рис. 3.28).

Рис. 3.28. Дифрактометрическая кривая бертьерина из шамозитовой зоны профиля выветривания объекта № 7.

3.4. Последовательность минералообразования в гипербазитах Серовско-Мауского офиолитового пояса.

Последовательность образования минералов в коре выветривания ультраосновных И других пород, впервые рассмотрена В работах И.И. Гинзбурга (1946, 1947, 1953). Позднее некоторые данные по этому вопросу опубликованы тем же автором и А.П. Никитиной (1956), Е.Г. Куковским (1961. 1963. 1966), Н.А. Журавлевой, a затем А.В. Вторушиным и В.И. Русским (1971). В одной из последних работ И.И. Гинзбург (1963) весьма подробно изучил реакции последовательного образования тех или иных минералов в различных корах выветривания.

Минеральный состав коры выветривания гипербазитов Серовско-Маукского офиолитового пояса весьма сложен и разнообразен ввиду сложной геологической истории их формирования. Изучая минеральный обратил состав, автор внимание на последовательный характер минералообразования И на основе полученных данных составил генетическую классификацию минералов коры выветривания. Также полученные результаты позволяют обосновать проявление гидротермальных процессов и низкоградного метаморфизма в истории развития массивов и кор выветривания Серовско-Маукского офиолитового пояса.

Последовательность образования минералов в коре выветривания не обязательно должна быть развивающимся до конца процессом с неизбежными, всегда определенными переходными минералами. Она зависит от физико-химических условий среды. В благоприятных условиях этот процесс происходит очень быстро, в неблагоприятных – медленно или

76

даже останавливается на какой-нибудь стадии, не давая при этом «конечных» продуктов разложения породы. «Конечными» продуктами являются минералы, стойкие в самых верхних горизонтах коры выветривания; чаще всего это гидроокислы и окислы железа, кварц, опал.

В представленной генетической классификации все минералы коры выветривания гипербазитов Серовско-Маукского офиолитового пояса делятся на *гипогенные* и *гипергенные*. Среди гипогенных выделяются четыре группы – *магматогенно-реликтовые, минералы океанического выветривания, низкоградно-метаморфогенно-реликтовые и гидротермально-реликтовые* минералы; среди гипергенных – *остаточные* и инфильтрационно-наложенные. Остаточные минералы подразделяются на две подгруппы – *диффузионные и инфильтрационные* (табл. 3.16).

К *магматогенно-реликтовым* отнесены следующие породообразующие минералы гипербазитов: оливин, пироксен и хромшпинелид. Рассмотрим последовательное преобразование данных минералов (табл.3.17).

Минералы *океанического выветривания* (на этапе спрединга) представлены хризотилом, лизардитом, пекораитом, баститом, амфиболами, магнетитом. Оливин превращается в серпентин, пироксен – в бастит, хромшпинелид – в магнетит. Хромшпинелид и магнетит встречаются во всех зонах коры, причем в зоне охр по сравнению с нижележащими зонами, содержание магнетита и хромшпинелида значительно выше.

Низкоградно-метаморфогенно-реликтовые минералы образуются при низкоградном метаморфизме гипербазитов на этапе раннемезозойской тектоно-магматической активизации региона, возникшей в результате трансрегионального рифтогенеза и траппового магматизма (Рапопорт М.С., 1998). За счет серпентина, бастита, амфиболов образуются хлорит и тальк.

Хлорит в коре выветривания по составу относится главным образом к железо-магнезиальному ряду. При микроскопическом изучении шлифов из

Таблица 3.16. Генетическая классификация основных минералов коры выветривания гипербазитов Серовско-Маукского офиолитового пояса.

	Ги	ипогенные		Гипергенные		
	Минералы	Низко-		Оста	точные	
Магматоген-	океаничес-	градно-	Гидротер-			Инфильтраци
но-	кого	метаморфо-	мально-	Пиффириации	Undum monutorius	лицо-изпоженные
реликтовые	выветрива-	генно-	реликтовые	диффузионные	инфильтрационные	
	ния	реликтовые				
	Лизардит,		Миллерит	Ноцтроцит	Гетит, гидрогетит,	
Оливин,	хризотил,		пиплерит,	понтронит,	гематит, нонтронит,	Шамозит,
пироксен,	пекораит,	Хлорит,		монтмориллонит,	тальк, кварц, опал,	сидерит,
хромшпине-	амфибол,	тальк	лалькопирит,	гациязит	халцедон, кальцит,	родохрозит,
лид	бастит,		пирротин,		магнезит, доломит,	пирит
	магнетит		ллорит, талык	каолинит	гидраргиллит	

Таблица 3.17. Последовательность минералообразования в коре выветривания гипербазитов Серовско-Маукского офиолитового пояса.

Примечание. В таблице не приведены минералы инфильтрационно-наложенного генезиса.

зон дезинтеграции и выщелачивания хорошо видно полное или частичное замещение серпентина, бастита, амфиболов хлоритом. Тальк образует псевдоморфозы по хлориту и другим более ранним минералам. Железо, высвобождающееся из оливина и пироксена, образует в серпентините тонкую сыпь или цепочкообразные скопления мельчайших зерен магнетита.

Гидротермально-реликтовые минералы, обнаруженные в трещинах хризотил-лизардитовых метасоматитов из зоны дезинтегрированных

серпентинитов, образуются при гидротермальных процессах. Низкотемпературные гидротермальные растворы, отделявшиеся OT магматического очага и содержащие медь, никель, железо и серу, отлагали в нарушенных зонах серпентинитов такие сульфидные тектонически как пирит (рис.3.29), миллерит (рис.3.30), халькопирит и минералы, минералы локализуются пирротин. Поскольку данные В трещинах дезинтегрированных серпентинитов, их формирование вследствие то процесса серпентинизации исключено. Халькопирит, пирит, пирротин в виде зерен размером до 1 мм неправильной и кубической формы ассоциируют с миллеритов, который имеет вид игольчатых кристаллов, часто собранных в радиально-лучистые агрегаты. В зоне охр минералы сульфидов почти не сохраняются, за исключением пирита, который здесь образуется инфильтрационным путем. Данные сульфиды довольно часто в своем составе содержат никель, что отражено в их химических составах (табл.3.18 и табл.3.19).

Рис. 3.29. Пирит в трещине хризотил-лизардитового метасоматита из зоны дезинтегрированных серпентинитов остаточной коры выветривания.

Таблица 3.18. Химический состав пирита из зоны дезинтегрированных серпентинитов по данным микрорентгеноспектрального анализа, масс. %

Комп.	21	22	Среднее
S	53,44	53,24	53,34
Fe	45,17	46,39	45,78
Ni	1,39	0,37	0,88
Сумма	100,00	100,00	100,00

Рис. 3.30. Миллерит в трещине хризотил-лизардитового метасоматита из зоны дезинтегрированных серпентинитов остаточной коры выветривания.

Таблица 3.19. Химический состав миллерита из зоны дезинтегрированных серпентинитов по данным микрорентгеноспектрального анализа, масс. %

Элемент	1	2	3
Ni	69,47	65,60	65,31
S	29,07	34,40	34,69
Fe	1,46	-	-
Сумма	100,00	100,00	100,00

Таким образом, на данном этапе преобразование и формирование новых минералов, происходящие при низкоградном метаморфизме и гидротермальных процессах, завершаются. Последующие преобразования минералов происходят в результате экзогенных процессов.

Остаточные минералы могут возникать двумя путями:

1) в результате непосредственного метасоматического замещения серпентинитов в процессе их выветривания (диффузионные);

2) в результате отложения холодных растворов при их просачивании на глубину по зонам тектонических нарушений и трещинам в серпентинитах (инфильтрационные).

В зависимости от этого остаточные минералы подразделяются на диффузионные и инфильтрационные. Нередко один и тот же минерал может образоваться различным путем.

К диффузионным остаточным минералам отнесены нонтронит, монтмориллонит, гидрохлорит, галлуазит, каолинит. Серпентин, подвергаясь влиянию агентов выветривания (кислорода, углекислоты, гумусовых кислот грунтовых вод) претерпевает сложный последовательный процесс И изменений. Выветривание серпентиновых минералов, происходит в условиях гумидного климата и сильной трещиноватости пород. В зоне дезинтеграции серпентин, поглощая воду, движущуюся по трещинам или порам породы, начинает гидратироваться И частично превращаться В нонтронит. Дальнейший вынос катионов из серпентиновых минералов приводит к разрушению кристаллической решетки, уменьшению объемного веса, увеличению пористости и изменению других физических и оптических свойств, в частности показателя преломления. Если же в серпентинитах остается реликтовый оливин, то в зоне дезинтеграции, главным образом в ее верхней части, он разрушается с образованием остаточной сетки, состоящей из бурых гидроокислов железа.

Пироксен и амфибол в верхних горизонтах зоны дезинтеграции и в нижних горизонтах зоны выщелачивания превращаются в гидрогетит (в виде мелкой сетки) и нонтронит. Под микроскопом видно, что этот процесс начинается с микротрещин и постепенно распространяется на все зерно.

Выветривание хлоритов в коре выветривания идет несколькими путями, но конечными продуктами их разложения являются одни и те же минералы: галлуазит, каолинит и гидроокислы железа. Стадийность изменения хлоритов можно представить следующими схемами:

1. Хлорит-гидрохлорит-гидрослюда-галлуазит-каолинит-

→кварц, опал, халцедон →гидроокислы железа →гидраргиллит

 Хлорит→гидрохлорит→монтмориллонит→галлуазит→каолинит→ → гидраргиллит→гидроокислы железа

При выветривании хлорит переходит в гидрохлорит, который особенно характерен для верхних зон коры выветривания. Гидрохлорит ПОД микроскопом, как правило, наблюдается в виде чешуйчатых зерен или землистых масс зеленого, бледно-зеленого цвета. При выветривании хлорита происходит окисление FeO и гидролиз силиката, сопровождающийся выделением кремнезема, а также частичный вынос MgO. При выщелачивании MgO окраска минерала бледнеет, а величина показателей преломления снижается. При наличии высоких концентраций никеля в нисходящих водах он эквивалентно замещает Mg^{2+} и Fe²⁺.

Монтмориллонит в свою очередь разлагается с образованием каолинита или галлуазита и гидроокислов железа.

Магнетит, маггемит и гематит возникают в результате окисления магматогенно-реликтовых хромшпинелидов, магнетита. Изменение хромшпинелидов начинается с периферии зерен, затем распространяется по трещинам, постепенно охватывая всю площадь зерна. Образованный при выветривании магнетит (на спрединга) океаническом этапе при последующим выветривании также превращается в маггемит, затем в гематит.

Инфильтрационно-остаточные минералы наиболее интересны и многочисленны. Гетит, гидрогетит, гематит образуются в результате освобождения железа из железосодержащих минералов при их разрушении в различных зонах коры выветривания. Так, при дальнейшем изменении магнетита, маггемита и других железосодержащих минералов железо в результате освобождения из кристаллической решетки этих минералов переходит в холодные растворы. Эти растворы просачиваются в рыхлую охристую массу верхней зоны коры и движутся по трещинам выщелоченных и дезинтегрированных серпентинитов, и по мере достижения соответствующих концентраций железо выпадает из растворов в виде гетита, гидрогетита и гематита. В тех случаях, когда вместе с железом в растворы поступали и другие химические элементы, в частности Mg, Al, Si и Ni, происходило образование нонтронита.

Кремний, поступающий в коровые растворы за счет разрушения минералов даек диоритов, шел на образование осадочного кварца, халцедона, опала. Некоторая часть кремния, осаждаясь вместе с магнием, железом, алюминием, а иногда и с никелем, образовывала тальк, нонтронит и другие минералы. Кальцит, магнезит и доломит так же, как и другие минералы этой являются осадочно-новообразованными. Магний И кальций группы, поступали в коровые растворы в результате разрушения плагиоклазов и пироксенов из даек, серпентина, хлоритов. Карбонатные минералы большей выпадали в трещинах дезинтегрированных и частью выщелоченных серпентинитов, где рН>11 и среда была восстановительной.

Инфильтрационно-наложенные минералы возникли после формирования коры выветривания и перекрытия ее осадками юры и мела. Они не связаны с разрушением гипербазитовых массивов и дайковых пород. Минерализованные воды из озерно-болотных водоемов проникали вниз (в верхние зоны коры выветривания) и в результате инфильтрации и наложения образованные замещали некоторые ранее минералы. Кроме метасоматического замещения минералы этой группы осаждались из холодных растворов по трещинам и порам пород коры выветривания. В коре серпентинитов обнаружен инфильтрационновыветривания метасоматический шамозит, который частично замещает как гипергенные новообразованные, так И гипогенные реликтовые минералы. Инфильтрационный шамозит выделяется по трещинам и пустотам и относится к более поздней генерации. К этой группе относятся также пирит, сидерит, родохрозит. Пиритизация и сидеритизация как инфильтрационноналоженные процессы проявлены в коре выветривания слабее, чем шамозитизация. Пирит в виде кристалликов размером 0,5 мм часто встречается в охристой гидрогетитовой массе верхней зоны коры выветривания. Сидерит находится в тесной парагенетической ассоциации с шамозитом, родохрозитом. Он в виде округлых сферолитовых зерен, почковидных стяжений и явнокристаллических агрегатов наблюдается в рыхлых глинистых шамозитизированных породах, цементируя их.

Таким образом, кора выветривания гипербазитовых массивов Серовско-Маукского офиолитового пояса содержит большое количество минералов различного генезиса и несет следы различных процессов – *океанического выветривания, низкоградного метаморфизма*, *гидротермальных и метасоматических процессов*.

3.5. Анализ поведения РЗЭ в породах коры выветривания.

Распределение редкоземельных элементов (РЗЭ) в корах выветривания гипербазитов Серовско-Маукского офиолитового пояса изучено крайне слабо. Это связано, прежде всего, с относительно низкими содержаниями РЗЭ в породах коры выветривания. Тем не менее, многие исследователи кор выветривания (Таловина И.В., 2012; Алфимова Н.А., 2011; Пилюгин А.Г., 2011; Рыжкова С.О., 2010; Скублов С.Г., 2005; Перельман А.И., 1972) анализ распределения и поведения РЗЭ в профиле считают. что является достаточно информативным выветривания с точки зрения уточнения генезиса благодаря их особым свойствам (вся группа элементов имеет очень близкий ионный радиус), которые определяют их миграционную способность (Ланда Э.А., 1990; Кетре U., 1999). Таким образом, РЗЭ могут фракционировать во время выветривания или транспортировки.

Представления о малой подвижности и накоплении РЗЭ при выветривании, казалось бы, подтверждаются хорошо известными данными о том, что РЗЭ вместе с ниобием, танталом, цирконием относятся к группе элементов-гидролизатов со средними значениями ионного потенциала (2-9), они легко гидролизуются в водных растворах с образованием

85

малорастворимых гидроокисей (Taylor S.R., 1985). Также известно, что на РЗЭ слабо влияют процессы гидротермального изменения И низкотемпературного метаморфизма, поэтому их содержания наиболее корректно отражают состав магматических или осадочных пород (Скляров Е.В., 2001).

Главной задачей исследования являлась оценка степени подвижности РЗЭ и установление геохимических закономерностей их поведения в двух различных типах профилей выветривания (Илалова Р.К., 2017).

В таблицах 3.20 и 3.23 представлено среднее содержание РЗЭ в породах двух различных типов профилей выветривания, а в таблицах 3.21, 3.22, 3.24 и 3.25 – коэффициенты их накопления. Синим цветом в таблицах отмечены значения Кн>1000, оранжевым – Кн>100, желтым – Кн 10-100, зеленым – Кн 1-10, серым – Кн<1. Графики нормализованных к мантийному гарцбургиту содержаний РЗЭ по профилям выветривания приведены на рис. 3.31 и рис.3.32.

Остаточная кора выветривания

РЗЭ	1	2	3	4	5	6	7	8
La	3,640	9,390	4,180	4,560	0,170	0,120	0,010	0,237
Ce	11,690	6,840	3,240	0,720	0,070	0,170	0,030	0,613
Pr	1,010	3,080	0,980	1,190	0,060	0,060	0,010	0,093
Nd	3,730	12,760	4,620	3,120	0,110	0,200	0,030	0,457
Sm	1,260	2,920	1,160	1,040	0,070	0,080	0,010	0,148
Eu	0,230	0,620	0,230	0,100	0,030	0,030	0,010	0,056
Gd	0,760	1,950	0,690	0,400	0,020	0,030	0,020	0,199
Tb	0,180	0,320	0,160	0,590	0,040	0,040	0,010	0,036
Dy	0,740	2,260	0,840	0,720	0,020	0,080	0,040	0,246
Но	0,160	0,540	0,200	0,630	0,040	0,070	0,010	0,055
Er	0,380	1,310	0,430	0,740	0,050	0,070	0,040	0,160
Tm	0,130	0,210	0,090	0,580	0,040	0,050	0,010	0,025
Yb	0,580	1,150	0,420	0,650	0,150	0,080	0,070	0,161
Lu	0,160	0,200	0,100	0,520	0,060	0,060	0,010	0,025
Сумма	24,650	43,550	17,340	15,560	0,930	1,140	0,310	2,511

Таблица 3.20. Среднее содержание редкоземельных элементов в профиле остаточного типа коры выветривания, г/т.

Легкие РЗЭ	21,560	35,610	14,410	10,730	0,510	0,660	0,100	1,604
Тяжелые РЗЭ	3,090	7,940	2,930	4,830	0,420	0,480	0,210	0,907
La/Lu	22,750	46,950	41,800	8,769	2,833	2,000	1,000	9,480

Примечание. 1-гетитовые породы; 2-тальк-гетитовые породы; 3,4-клинохлор-пенниновые, клинохлор-тальк-пенниновые метасоматиты; 5,6-хризотил-лизардитовые и непуитхризотил-лизардитовые метасоматиты, 7-гарцбургиты Хабарнинского массива (Ферштатер Г.Б., 1988); 8-примитивная мантия (McDonough W.F., 1990).

Таблица 3.21. Коэффициенты накопления редкоземельных элементов в горных породах остаточной коры выветривания по отношению к примитивной мантии (McDonough W.F., 1990).

РЗЭ	1	2	3	4	5	6
La	15,4	39,6	17,6	19,2	0,7	0,5
Ce	19,1	11,2	5,3	1,2	0,1	0,3
Pr	10,9	33,1	10,5	12,8	0,6	0,6
Nd	8,2	27,9	10,1	6,8	0,2	0,4
Sm	8,5	19,7	7,8	7,0	0,5	0,5
Eu	4,1	11,1	4,1	1,8	0,5	0,5
Gd	3,8	9,8	3,5	2,0	0,1	0,2
Tb	5,0	8,9	4,4	16,4	1,1	1,1
Dy	3,0	9,2	3,4	2,9	0,1	0,3
Но	2,9	9,8	3,6	11,5	0,7	1,3
Er	2,4	8,2	2,7	4,6	0,3	0,4
Tm	5,2	8,4	3,6	23,2	1,6	2,0
Yb	3,6	7,1	2,6	4,0	0,9	0,5
Lu	6,4	8,0	4,0	20,8	2,4	2,4

Примечание. 1-гетитовые породы; 2-тальк-гетитовые породы; 3,4-клинохлор-пенниновые, клинохлор-тальк-пенниновые метасоматиты; 5,6-хризотил-лизардитовые и непуитхризотил-лизардитовые метасоматиты.

Таблица 3.22. Коэффициенты накопления редкоземельных элементов в породах остаточной коры выветривания по отношению к типичному гарцбургиту Урала (Ферштатер Г.Б., 1988).

РЗЭ	1	2	3	4	5	6
La	364,0	939,0	418,0	456,0	17,0	12,0
Ce	389,7	228,0	108,0	24,0	2,3	5,7

87

Pr	101,0	308,0	98,0	119,0	6,0	6,0
Nd	124,3	425,3	154,0	104,0	3,7	6,7
Sm	126,0	292,0	116,0	104,0	7,0	8,0
Eu	23,0	62,0	23,0	10,0	3,0	3,0
Gd	38,0	97,5	34,5	20,0	1,0	1,5
Tb	18,0	32,0	16,0	59,0	4,0	4,0
Dy	18,5	56,5	21,0	18,0	0,5	2,0
Но	16,0	54,0	20,0	63,0	4,0	7,0
Er	9,5	32,8	10,8	18,5	1,3	1,8
Tm	13,0	21,0	9,0	58,0	4,0	5,0
Yb	8,3	16,4	6,0	9,3	2,1	6,0
Lu	16,0	20,0	10,0	52,0	6,0	3,7

Примечание. Усл. обозн. см. табл. 3.21

Преобразованная инфильтрационно-метасоматическая кора выветривания

Таблица 3.23. Среднее содержание редкоземельных элементов в профиле преобразованного типа коры выветривания, г/т.

РЗЭ	1	2	3	4	5	6	7
La	10,926	16,185	4,960	3,062	1,822	0,010	0,237
Ce	9,644	16,154	3,527	4,494	1,175	0,030	0,613
Pr	3,597	5,428	1,320	0,654	0,460	0,010	0,093
Nd	17,132	25,851	5,737	2,856	2,053	0,030	0,457
Sm	4,150	6,240	1,247	0,611	0,389	0,010	0,148
Eu	1,242	1,888	0,397	0,203	0,128	0,010	0,056
Gd	3,922	5,833	1,410	0,645	0,398	0,020	0,199
Tb	0,654	0,969	0,243	0,113	0,066	0,010	0,036
Dy	3,966	6,161	1,670	0,728	0,397	0,040	0,246
Но	0,876	1,403	0,417	0,181	0,091	0,010	0,055
Er	2,564	4,185	1,303	0,552	0,276	0,040	0,160
Tm	0,358	0,598	0,207	0,081	0,039	0,010	0,025
Yb	2,379	3,849	1,110	0,559	0,245	0,070	0,161
Lu	0,367	0,628	0,197	0,101	0,047	0,010	0,025
Сумма	61,777	95,372	23,745	14,840	7,586	0,310	2,511
Легкие РЗЭ	46,691	71,746	17,188	11,880	6,027	0,100	1,604
Тяжелые РЗЭ	15,086	23,626	6,557	2,960	1,559	0,210	0,907
La/Lu	29,771	25,772	25,178	30,317	38,766	1,000	9,480

Примечание. 1-2 – шамозитовые горные породы; 3-миллерит-бриндлейит-шамозитовые горные породы; 4-лизардитовые серпентиниты; 5-хризотиловые серпентиниты;

6-гарцбургиты Хабарнинского массива (Ферштатер Г.Б., 1988); 7-примитивная мантия (McDonough W.F., 1990).

Таблица 3.24. Коэффициенты накопления редкоземельных элементов в горных породах преобразованной коры выветривания по отношению к примитивной мантии (McDonough W.F., 1990).

РЗЭ	1	2	3	4	5
La	46,1	68,3	20,9	12,9	7,7
Ce	15,7	26,4	5,8	7,3	1,9
Pr	38,7	58,4	14,2	7,0	4,9
Nd	37,5	56,6	12,6	6,2	4,5
Sm	28,0	42,2	8,4	4,1	2,6
Eu	22,2	33,7	7,1	3,6	2,3
Gd	19,7	29,3	7,1	3,2	2,0
Tb	18,2	26,9	6,8	3,1	1,8
Dy	16,1	25,0	6,8	3,0	1,6
Но	15,9	25,5	7,6	3,3	1,7
Er	16,0	26,2	8,1	3,5	1,7
Tm	14,3	23,9	8,3	3,2	1,6
Yb	14,8	23,9	6,9	3,5	1,5
Lu	14,7	25,1	7,9	4,0	1,9

Примечание. 1-2 – шамозитовые породы; 3-миллерит-бриндлейит-шамозитовые породы; 4-лизардитовые серпентиниты; 5-хризотиловые серпентиниты; 6-Кн химических элементов в гарцбургитах Урала (Ферштатер Г.Б., 1988) по отношению к примитивной мантии (McDonough W.F., 1990).

Таблица 3.25. Коэффициенты накопления редкоземельных элементов в породах преобразованной коры выветривания по отношению к типичному гарцбургиту Урала (Ферштатер Г.Б., 1988).

РЗЭ	1	2	3	4	5
La	1092,6	1618,5	496	306,2	182,2
Ce	321,5	538,5	117,6	149,8	39,2
Pr	359,7	542,8	132	65,4	46
Nd	571,1	861,7	191,2	95,2	68,4
Sm	415	624	124,7	61,1	38,9
Eu	124,2	188,8	39,7	20,3	12,8
Gd	196,1	291,7	70,5	32,3	19,9
Tb	65,4	96,9	24,3	11,3	6,6
Dy	99,2	154	41,8	18,2	9,9
Но	87,6	140,3	41,7	18,1	9,1

Er	64,1	104,6	32,6	13,8	6,9
Tm	35,8	59,8	20,7	8,1	3,9
Yb	34	55	15,9	8	3,5
Lu	36,7	62,8	19,7	10,1	4,7

Примечание. Усл. обозн. см. табл. 3.23

Рис.3.31. График нормализованных к мантийному гарцбургиту содержаний редкоземельных элементов в породах остаточного типа коры выветривания. Усл. обозн. см. табл. 3.21.

Рис.3.32. График нормализованных к мантийному гарцбургиту содержаний редкоземельных элементов в породах преобразованного типа коры выветривания. Усл. обозн. см. табл. 3.24

Результаты исследований показывают, что абсолютного накопления РЗЭ при выветривании не происходит, а наоборот, преобладает тенденция к их выносу в тех или иных масштабах. Однако в отдельных зонах или участках, но не в коре в целом, отмечается их накопление. Это может быть объяснено перераспределением РЗЭ в коре и образованием их локальных скоплений. Наиболее интенсивный вынос РЗЭ происходит при образовании нижних зон профиля выветривания, а в верхних зонах наблюдается их рост. Аккумуляция РЗЭ в верхних зонах происходит из-за образующихся при

выветривании глинистых и других тонкодисперсных минералов, а также склонности РЗЭ к образованию устойчивых и поэтому легко подвижных в водах комплексных соединений, приводящих к повышению их миграционной способности.

РЗЭ содержатся не только в новообразованных глинистых минералах, но и в гидроокисных минералах железа, марганца и алюминия, которые выделяются в виде охристых дисперсных образований. Из-за дисперсности данных минералов оценить баланс РЗЭ в зоне охр не представляется возможным, но независимо от форм их нахождения они могут играть большую роль.

Во всех разновидностях гипергенных пород отмечается отрицательная цериевая аномалия, связанная с повышенной растворимостью церия по сравнению с другими редкоземельными элементами в гипергенных растворах.

При сравнении данных таблиц 3.21 и 3.24, а также 3.22 и 3.25 отчетливо заметна разница в величинах Кн РЗЭ, полученных по данным двух авторов, при значительном превосходстве по величине Кн, рассчитанных по отношению к уральскому гарцбургиту. Полученная разница объясняется низким содержанием РЗЭ в уральских офиолитах по сравнению со средним составом гранатовых лерцолитов (McDonough, 1990). По полученным данным РЗЭ характеризуются низкими содержаниями, в основном средними (Кн 10-100) и в меньшей степени высокими (Кн 100-1000 и более) коэффициентами накопления. Тем не менее, общая тенденция к накоплению РЗЭ к верхним горизонтам двух различных профилей выветривания прослеживается на графиках рисунков 3.31 и 3.32. Но в профиле преобразованной коры выветривания содержания РЗЭ несколько выше, чем в профиле остаточной коры. Данный факт объясняется особенностями формирования кор выветривания при схожем составе и возрасте материнских пород в пределах изучаемой территории. Из рис. 3.33 и рис. 3.34 видно, что в остаточной коре выветривания практически в два раза меньше содержаний РЗЭ. Следует также отметить, что в преобразованной коре выветривания тяжелых РЗЭ примерно в 2,5 раза больше, чем в остаточной коре.

Рис. 3.33. Среднее содержание РЗЭ в никеленосных горных породах остаточного типа коры выветривания, г/т. Усл. обозн. см. табл. 3.21.

Рис. 3.34. Среднее содержание РЗЭ в горных породах преобразованного типа коры выветривания, г/т. Усл. обозн. см. табл. 3.24.

Из анализа таблиц и графиков следует, что в целом РЗЭ в породах двух различных типов кор выветривания демонстрируют сходный характер распределения:

1) породы имеют достаточно выдержанный субмантийный характер распределения РЗЭ (унаследованный, по-видимому, от первичных гипербазитов), без избирательного накопления того или иного отдельного элемента;

2) РЗЭ в породах накапливаются при переходе от нижних к верхним горизонтам, что говорит о положительном влиянии процессов гипергенеза на накопление этих элементов;

3) максимальные значения содержаний РЗЭ установлены в породах верхних горизонтов, поскольку их аккумуляция происходит из-за образующихся при выветривании глинистых и других тонкодисперсных минералов;

4) РЗЭ характеризуются относительно низкими содержаниями, но в основном средними и в меньшей степени высокими коэффициентами накопления;

5) в породах наблюдается хорошо проявленная отрицательная цериевая аномалия, по-видимому, обусловленная его повышенной растворимостью в гипергенных растворах по сравнению с другими лантаноидами.

6) для пород характерно слабое плавное увеличение содержания лантаноидов от легких к средним, а затем к тяжелым, поскольку в условиях гипергенеза РЗЭ подвержены слабому фракционированию.

Следует также подчеркнуть важное отличие распределения РЗЭ в породах двух различных типов профилей выветривания:

1) в породах преобразованного типа профиля выветривания наблюдается несколько большее накопление РЗЭ в отличие от пород остаточного типа коры выветривания (примерно в 2 раза).

2) в породах преобразованной коры выветривания тяжелых РЗЭ примерно в 2,5 раза больше, чем в породах остаточной коры выветривания.

Таким образом, приведенные материалы показывают, что увеличение степени экзогенного преобразования гипергенных пород приводит к концентрации РЗЭ, увеличению них вызванные процессами В выщелачивания РЗЭ из первичных минералов пород и последующим их новообразованных гипергенных накоплением В виде минералов. закономерности РЗЭ Установленные геохимические поведения В гипергенных образованиях могут быть использованы в практике при уточнении генезиса и типизации кор выветривания, а также при прогнозировании и поисках редкоземельных гипергенных месторождений, связанных с корами выветривания.

3.6. Генезис кор выветривания на объектах №№ 2,3,4,6,7,8.

Коры выветривания гипербазитов Серовско-Маукского офиолитового пояса – уникальные природные объекты, поскольку подавляющая ее часть содержит породообразующий рудный железистый хлорит (шамозит).

Генезис шамозитовой минерализации окончательно не установлен. По данным А.В. Вторушина и Н.А. Журавлевой (1967), Л.И. Кононовой с соавторами (1974) история формирования коры выветривания на объекте № 7 (Еловский) была более сложной, чем родственных кор выветривания Урала. Помимо стадии образования сублатеритной коры выветривания (T-J) по Кольскому гипербазитовому массиву она включала стадию эпигенеза (К₁) – разрушения, переноса и переотложения пород верхних горизонтов профиля выветривания в депрессиях палеорельефа с образованием осадочных бобовоконгломератовых железистых пород ИЗ продуктов латеритного выветривания. По данным этих же авторов одновременно с бобовоглубоких горизонтах конгломератовыми В более профиля рудами выветривания за счет просачивания поверхностных застойных вод образовывались и шамозитовые метасоматиты.

Другого взгляда на происхождение шамозитовой зоны в профиле выветривания придерживался Б.М. Михайлов (2002). Он считал, что источник вод, послуживший причиной формирования шамозитовой зоны, был глубинным, термально-гипергенным. Согласно его представлениям рудные залежи объекта № 7 (Еловский) и других уральских месторождений возникли в зоне Главного Уральского глубинного разлома в период его раннемезозойской активизации, которая способствовала появлению очагов интенсивного дробления пород и зарождению рудоносных гидротермальных Отложение рудного вещества данных систем. систем происходило исключительно в зоне гипергенеза благодаря восходящим углекислым термам на гипергенных барьерах – участках спада температуры, давления, изменения pH, Eh условий. Эти гидротермальные очаги Б.М. Михайлов называл «термальными окнами», а подобные рудопроявления предлагал называть рудопроявлениями термального гипергенеза.

Для обсуждения вопроса формирования шамозитсодержащих метасоматитов автором работы были использованы результаты предшественников (Куземкина Е.Н., 1971; Мезенцева О.П., 2011) по изотопным исследованиям δ³⁴S в миллерите, а также δ¹⁸O и δ¹³C в кальците из карьера объекта № 7 (Еловский). Результаты исследований представлены в таблицах 3.26 и 3.27.

Таблица 3.26. Результаты анализа изотопного состава серы в миллерите из профиля выветривания объекта № 7 (Еловский) (Мезенцева О.П., 2011).

№ п/п	Рудоносные метасоматиты	δ ³⁴ S (‰) CDT
1	Шамозитовые	-45,6±0,6
2	Хризотил-лизардитовые	-35,5

Примечание. Погрешность оценки изотопного сдвига по данным трех параллельных измерений составляет ≤ ± 0,3 ‰.

Таблица 3.27. Результаты анализа изотопного состава кислорода и углерода в кальците из профиля выветривания объекта № 7 (Еловский) (Мезенцева О.П., 2011).

№ п/п	Рудоносные метасоматиты	δ ¹⁸ O (‰) V-PDB	δ ¹³ C (‰) V-PDB
1	Хризотил-лизардитовые (из нижних горизонтов)	-13,5	4,7
2	Клинохлор-бриндлейит-шамозитовые	-9,5	-10,8
3	Шамозитизированные хризотил- лизардитовые	-8,7	-14,3

Примечание: Погрешность измерения по данным трех параллельных измерений составляет для $\delta^{18}O \le \pm 0,2$ ‰, для $\delta^{13}C \le \pm 0,3$ ‰.

На диаграмме Й. Хефса (Hoefs J., 2009) отчетливо видно (рис. 3.35), что величины δ³⁴S в миллерите из профиля выветривания объекта № 7 (Еловский) перекрываются с диапазоном осадочных пород в области их резко отрицательных значений и не перекрываются с диапазоном других минералов и горных пород этих величин.

По данным А.П. Виноградова с соавторами (1962), Г. Шварца и С. Берни (Schwarcz, Burnie, 1973) резко отрицательные величины δ³⁴S

характеризуют эвксинные условия среды с ограниченной циркуляцией и застойными или анаэробными условиями токсичных донных вод бассейнов Санта-Барбары, Западной Балтики, Черного моря (рис. 3.36).

Рис 3.35. Диаграмма Й. Хефса (Hoefs J., 2009) по 8³⁴S с данными по миллериту из профиля выветривания объекта № 7 (Еловский).

Изотопные данные по величинам δ³⁴S в миллерите из профиля выветривания объекта № 7 (Еловский) хорошо согласуются с условиями эвксинной озерно-болотной обстановки Сосьвинской депрессии, существовавшей здесь в альб-сеноманское время, и характеризовавшейся пониженными химическими потенциалами кислорода и повышенными – железа, никеля, серы, с высоким содержанием органики.

По Й. Хефсу содержания δ^{34} S для сульфидных минералов большинства гидротермальных месторождений близки к нулю, и они располагаются около эталонного троилита метеоритов. Таким образом, полученные изотопные данные серы дают однозначный ответ в пользу эвксинной обстановки образования миллерита Еловского месторождения в альб-сеноманское время.

Рис. 3.36. Изотопный состав Fe-сульфидов, формирующихся в различных современных осадочных средах: 1 – Виноградов и др. (1962); 2 – Хартманн и Хилсен (Hartmann and Hielsen, 1969); 3 – Каплан и др.(Kaplan et. al., 1963).

Полученные значения δ^{18} O (‰) V-PDB в кальците (табл. 3.27) на диаграмме Й. Хефса (Hoefs, 2009) попадают в область средних величин метеорных вод. При этом полученные значения не перекрываются со значениями океанической воды (1 ‰ δ^{18} O), обогащаясь легким изотопом ¹⁶O, а также со значениями для магматических, осадочных и метаморфических пород (рис. 3.37).

Полученные значения δ^{13} С в кальците из профиля выветривания объекта № 7 (табл. 3.27) на диаграмме Й. Хефса (Hoefs, 2009) перекрываются с областью этих величин пресноводных карбонатов, обогащенных легким изотопом C¹², и морских и неморских организмов (рис. 3.38). Но полученные значения δ^{13} С кальцита менее соответствуют диапазону величин для морских и неморских организмов. Таким образом, данные по изотопам углерода в кальците соответствуют гипотезе их пресноводного осадочного генезиса.

Рис. 3.37. Диаграмма Й. Хефса (Hoefs, 2009) по б¹⁸О с данными по кальциту из профиля выветривания объекта № 7.

Рис. 3.38. Диаграмма Й. Хефса (Hoefs, 2009) по б¹³С с данными по кальциту из профиля выветривания объекта № 7.

Ниже приведена генетическая характеристика кор выветривания по каждому изученному объекту (Илалова Р.К., 2017).

Объект №6 (Катасьминский)

Данный объект является единственным, где преобразованная инфильтрационно-метасоматическая (шамозитовая) кора выветривания отсутствует, по-видимому, вследствие эрозионных процессов.

Для объекта характерно в верхних частях разреза многократное чередование структурных (кремнистых, песчаных) охр и плотных железистокремнистых образований по серпентинитам с сильно обохренными рыхлыми выщелоченными окремненными серпентинитами, близкими по своему составу к охрам. В охристых продуктах содержится большое количество гетит-каолиновых «прослоев», представляющих собой продукты выветривания различных даек жильных пород, утративших свою первичную структуру.

Охры и сильно обохренные выщелоченные серпентиниты, близкие по составу к охрам, отмечаются под осадками мезокайнозоя повсеместно на всей площади объекта. Наличие вторичных охристых продуктов на особенности поверхности коры, В В западных частях разрезов, свидетельствует о более позднем их происхождении. Поскольку продукты остаточной коры всюду перекрыты морскими верхнемеловыми песками, песчаниками и конгломератами, вторичное обохривание пород могло происходить в период до верхнемеловой трансгрессии.

Охры, развитые по тектоническим трещинам, особенно в приконтактовой зоне с диоритами, и глубоко опускающиеся по разрезу, являются остаточными первичными раннемезозойскими.

В средних частях разреза наблюдается чередование плотных и рыхлых в различной степени выщелоченных серпентинитов, в той или иной мере окремненных и оталькованных, иногда затронутых нонтронитизацией, со слабо выветрелыми серпентинитами, содержащими прожилки карбонатов и относящимися к зоне дезинтеграции и самым нижним горизонтам зоны выщелачивания.

99

Среди выщелоченных серпентинитов отмечаются дайки разложенных и выщелоченных жильных диоритов, пироксенитов с хорошо сохранившейся реликтовой структурой материнских пород.

Судя по характеру чередования в вертикальном разрезе различных продуктов выветривания серпентинитов наиболее распространенным профилем на участке является сокращенный тальк-кварц-гетитовый. Значительно меньшим распространением пользуется сокращенный тальк-гетитовый профиль.

Мощности отдельных зон в перечисленных профилях характеризуются самыми различными значениями – от десятков сантиметров до нескольких десятков метров. Максимальная вертикальная мощность охр в приконтактовой зоне достигает до 70-90 м. Рыхлые выщелоченные серпентиниты имеют меньшую мощность, которая обычно не превышает 30 м. Мощность плотных выщелоченных серпентинитов, как и у рыхлых, обычно – 20-30 м, но в трещиноватых зонах она увеличивается до 60-70 м и более.

Объект № 7 (Еловский)

Объект отражает довольно полный вертикальный профиль преобразованной инфильтрационно-метасоматический коры выветривания.

Наряду с остаточной корой выветривания в профиле выветривания широко развита также преобразованная кора. На западном фланге и крайнем юге преобразованная кора отсутствует.

Преобразованная кора выветривания как по гипербазитам, так и по жильным породам имеет хорошо выраженную вертикальную зональность, проявляющуюся в смене химического и минерального состава ее продуктов по направлению сверху вниз. Современная дневная поверхность объекта ровная слабо волнистая с незначительным наклоном на восток. Абсолютные отметки поверхности западного фланга равняются 137-110 м, восточного – 110-91 м.

В коре выветривания по серпентинитам выделяется: 1) подзона сильно шамозитизированных пород; 2) подзона шамозитизированных и 3) подзона слабо шамозитизированных пород. В верхней подзоне сильно шамозитизированных пород иногда отмечается большое количество гипергенных сидерита и магнетита, реже марказита, миллерита и гиббсита. В слабо подзоне шамозитизированных пород идет начальная стадия шамозитизации серпентинитовых минералов и гипергенных их производных.

При замещении оталькованных серпентинитов шамозитом образуются смешаннослойные образования, часто хлоритизированные. Таким образом, продукты выветривания серпентинитов часто являются рудными с содержанием никеля до 2 % и кобальта до 0,07-0,2 %. Начальная стадия шамозитизации оталькованных серпентинитов отмечается иногда на больших глубинах, в зоне плотных слабо выщелоченных серпентинитов.

Объект № 2

По условиям образования на объекте развита остаточная кора, сильно преобразованная с поверхности. Причем наряду с шамозитизированной корой широко развита преобразованная кора за счет дальнейшего химического разложения первичных продуктов раннемезозойской коры с развитием вторичных охр и сильно обохренных серпентинитов. В отличие от кор выветривания других участков, кора данного участка характеризуется довольно простым строением.

глубиной Сверху развиты охры, с сменяющиеся рыхлыми шамозитизированными плотными выщелоченными И вышелоченными Часто серпентинитами. охры залегают непосредственно на дезинтегрированных серпентинитах.

Объект № 3

На объекте в равной мере развиты и остаточная, и преобразованная коры выветривания. Продукты выветривания как остаточной, так и преобразованной кор по составу и условиям образования аналогичны объекту № 7, но имеют сравнительно меньшую мощность. Так общая

мощность нижней реликтовой части остаточной коры составляет всего 15-30 м, а отдельные интервалы чередующихся дезинтегрированных, рыхлых, и плотных выщелоченных серпентинитов и опускающихся по карманам охр достигают не более 0,7-1,0 м.

В остаточной коре преимущественным развитием пользуются сокращенные тальк-гетитовый и тальк-кварц-гетитовый профили выветривания. На флангах месторождения отмечаются неполные размытые тальковый и дезинтегрированный профили.

Преобразованная кора выветривания как и остаточная, характеризуется сравнительно небольшой мощностью – 15-20 м. В ней прослежена такая же зональность, как и на объекте № 7.

В верхней части преобразованная кора выветривания объекта №3 иногда сильно сидеритизирована и магнетитизирована с развитием плотных и очень тяжелых сидерит-магнетит-шамозитовых и шамозит-магнетитсидеритовых пород.

В верхней части преобразованной коры выветривания как жильных, так и гипербазитов отмечаются пятна, скопления и прожилки гиббсита развитого в порах, пустотках и трещинках. Гиббсит иногда представлен хорошо окристаллизованными табличками с двойниковым строением, но чаще он слабо окристаллизован, имеет метаколлоидное строение и образует сгустки, пятна и неправильные полоски в шамозитовой части породы. При окислении шамозитовых пород шамозит буреет, переходит в гидроокислы железа, а гиббсит сохраняется.

Объект № 4

По условиям образования на объекте развиты остаточная и преобразованная шамозитизированная коры выветривания. Вследствие сильного размыва остаточной коры ее профиль не известен.

В нижних частях разреза реликтовой остаточной коры сохранились сокращенные тальк-гетитовый и тальк-кварц-гетитовый профили выветривания серпентинитов, осложненные гидрохлорит-монтмориллонит-

каолинитовыми профилями выветривания по жильным породам. Особенностью коры выветривания объекта является широкое развитие тальккварц-гетитового профиля с зонами сильно кремнистых охр и наличием в них интервалов сильно ожелезненных кремней.

Общая мощность реликтовой остаточной коры выветривания составляет всего 50-30 м и несколько увеличивается (50-70 м) в объектах скопления жильных пород. В восточной части объекта рыхлые продукты коры выветривания серпентинитов смыты полностью до дезинтегрированных пород.

Судя по имеющимся данным, преобразованная кора выветривания на объекте развита неравномерно и более тяготеет к его восточной части.

Объект № 8

По условиям образования основная масса коры выветривания относится к преобразованному типу. Реликты остаточной коры – практически безрудные плотные, реже рыхлые выщелоченные серпентиниты.

Общая мощность остаточной и преобразованной коры выветривания (до зоны дезинтеграции) на объекте невелика и составляет всего от 10 до 50 м. Из них: 1) от 5 до 25 м принадлежит вторичным охрам; 2) от 2 до 40 м – рыхлым выщелоченным шамозитизированным серпентинитам; 3) от 2 до 20 плотным выщелоченным серпентинитам. При ЭТОМ рыхлые Μ часто выщелоченные серпентиниты отсутствуют И тогда охры непосредственно залегают на плотных или даже на дезинтегрированных серпентинитах.

Определение основного профиля выветривания первичной остаточной коры в настоящий момент очень трудно, поскольку от нее сохранились только плотные и рыхлые выщелоченные серпентиниты.

Присутствующие в верхней части разреза охры являются вторичными. Изредка отмечаемые охры среди рыхлых и выщелоченных серпентинитов относятся к участкам трещинной коры, осложняющей основную площадную кору месторождения и не могут служить основанием для решения вопроса о наличии в профиле остаточной коры выветривания зоны охр, как верхней ее части. Поэтому, был ли в первичной остаточной коре тальк-гетитовый или тальк-нонтронит-гетитовый профиль, вопрос остается открытым.

В настоящий момент с уверенностью можно лишь говорить, что на объекте № 8 развит неполный (вследствие размыва верхних зон) тальковый профиль апогарцбургитовым ПО антигоритовым серпентинитам, тальк-гетитовым профилем осложненный В участках тектонических нарушений, преобразованный поздними сильно эпигенетическими процессами с развитием В верхней части разреза сильно шамозитизированных магнетитизированных сидеритизированных И продуктов выветривания серпентинитов, и вторичных охр по ним.

Преобразование коры происходило в период отложения бобовоконгломератовых руд (Вторушин А.В., 1967). Наряду с сильной шамозитизацией в верхней части разреза шло образование многочисленных стяжений сидерита, ассоциирующих с гипергенным магнетитом.

Поскольку шамозитизации подвергались антигоритовые серпентиниты, являющиеся наиболее устойчивыми по отношению к выветриванию и, следовательно, к шамозитизации, то среди шамозитовых пород в нижней части разреза присутствуют слабо шамозитизированные серпентиниты, а в шамозитизированных серпентинитах содержится большое количество реликтов антигорита.

Перед палеогеновой трансгрессией Устейский массив, видимо, вновь испытывал поднятия с сильным размывом не только меловых осадков, но и залегающих под ними продуктов древней коры выветривания. Выведенные на дневную поверхность шамозитизированные продукты коры выветривания серпентинитов подверглись окислению с образованием вторичных охр по шамозитизированным породам.

При размыве и разложении залегающих над корами бобовоконгломератовых и охристо-глинистых железных руд, одновременно с окислением шамозитов, очевидно, имела место сильная инфильтрация в подстилающую кору растворов и механической мути гидроокислов железа преимущественно гематитового состава, не наблюдаемая на других участках месторождения. Благодаря этому вторичные охры и шамозитизированные рыхлые выщелоченные серпентиниты содержат большое количество инфильтрационного гетита и гематита, которые пропитывают их или отлагаются в виде гнезд, пятен и прожилков, придавая породам в целом вишнево-бурую, вишневую и вишнево-красную окраску.

Выводы по главе 3.

1. Остаточная кора выветривания гипербазитов на подавляющей площади с поверхности подверглась позднему наложенному инфильтрационно-метасоматическому преобразованию (шамозитизации) в условиях восстановительного режима среды с развитием своеобразной преобразованной коры, аналогов которой на Урале пока не обнаружено. Преобразованная кора выветривания отсутствует только на объекте № 6 (Катасьминский), по-видимому, вследствие эрозионных процессов.

2. На некоторых объектах остаточная и преобразованная коры выветривания подверглись более позднему химическому разложению с развитием вторичных охр по шамозитизированным породам.

3. Построенные вертикальные зональные профили двух типов выветривания – древний остаточный и преобразованный инфильтрационнометасоматический отличаются присутствием в последнем железистого хлорита шамозита, который образовался в анаэробных условиях.

4. В породах преобразованного типа коры выветривания отмечается повышенное накопление РЗЭ, чем в породах остаточного типа коры выветривания. Таким образом, степень подвижности РЗЭ зависит от переработки продуктов коры выветривания наложенными процессами (в данном случае шамозитизации) при схожем составе и возрасте субстрата.

В результате проведенных автором комплексных исследований было выявлено широкое распространение восстановительного процесса – шамозитизации, возникшего в результате заболачивания изучаемой территории и инфильтрации озерно-болотных вод в верхние горизонты коры выветривания. Как следствие – повсеместное образование инфильтрационнометасоматической (шамозитовой) коры выветривания на территории (большей части). Устейского Кольского И Вагранского массивов. Шамозитизация отражена развитием железистого хлорита – шамозита. Единственный участок – южная часть Кольского массива, не затронут данным процессом или шамозитовая зона была эродирована в позднем палеогене. Кроме того, изучаемые коры выветривания несут следы гидротермальных процессов и низкоградного метаморфизма (данные подробно изучены в главах 4 и 5 соответственно). В вопросы минералогическом отношении гидротермальные процессы проявлены отложением в тектонически нарушенных зонах серпентинитов таких сульфидных минералов, как халькопирит, пирит, пирротин и миллерит. Низкоградный метаморфизм отражен в последовательном преобразовании реликтовых минералов – серпентина, бастита, амфиболов и замещении их хлоритом, тальком.

Формулировка 1 защищаемого положения

В пределах Сосьвинской и Замарайской депрессий Кольского также Устейского и Вагранского развита массива. а массивов инфильтрационно-метасоматическая (шамозитовая) кора выветривания, образованная в анаэробных условиях с развитием шамозитовых. миллерит-бриндлейит-шамозитовых, бертьеринклинохлор-шамозитовых пород, тогда как в пределах Катасьминской депрессии Кольского массива развита остаточная кора выветривания с преобладанием кварц-гетитовых, клинохлор-пеннин-талькохлоритовых, непуит-хризотил-лизардитовых пород.

4. ТЕРМОМЕТРИЯ ХЛОРИТОВ КАК ИНДИКАТОРОВ УСЛОВИЙ МИНЕРАЛООБРАЗОВАНИЯ В КОРАХ ВЫВЕТРИВАНИЯ.

Хлориты, наряду с другими слоистыми силикатами и оксидами, обогащенными никелем, относятся к числу главных промышленных минералов оксидно-силикатных никелевых месторождений Урала (Бородина К.Г., 1980; Витовская И.В., 1986; Куземкина Е.Н., 1969; Лазаренков В.Г., 2011; Эдельштейн И.И., 1968). Примером служит железистый хлорит – шамозит, слагающий никелевые руды (шамозитовые метасоматиты) крупного Еловского месторождения (Таловина И.В., 2013). Помимо никеленосности, интерес к изучению хлоритов из месторождений подобного типа диктуется тем, что эти минералы стабильны в широком интервале температур и давлений, а их состав чутко реагирует на изменение условий минералообразования. Особого внимания в данной связи заслуживает температурная зависимость состава хлоритов, анализ которой положил начало самостоятельному направлению термобарометрических исследований хлоритовой термометрии (Кательников А.Р. 2012: De Caritat P., 1993). В последние годы усовершенствованию хлоритовых геотермометров уделялось большое внимание, благодаря чему ЭТО направление стало одним из наиболее эффективных подходов к оценке условий протекания диагенетических И низкотемпературных метаморфических процессов.

В данной работе хлоритовая термометрия использована для оценки условий образования пород, слагающих кору выветривания гипербазитов Серовско-Маукского офиолитового пояса (Илалова Р.К., Гульбин Ю.Л., 2018). Решение поставленной задачи особенно актуально в свете дискуссии, которая развернулась вокруг вопросов генезиса древних никеленосных латеритов. На примере серии представительных образцов в работе приводятся вариации химического состава хлоритов, теоретические основы и результаты термометрии.

4.1. Фактический материал и методы исследования.

Для изучения состава хлоритов были отобраны две группы представительных образцов из скважин № 4, 7 и 9, вскрывающих остаточную кору выветривания Кольского массива И показанных на линиях геологических разрезов 125 и 127 (рис. 4.1). Первая группа включала образцы из зоны выщелоченных серпентинитов, отобранные на верхних (обр. 6-7-54, 6-9-65) и нижних (обр. 6-9-95, 6-9-97) горизонтах. Вторая группа – образцы из нижележащей зоны оталькованных серпентинитов (обр. 6-4-96, 6-4-107). Дополнительно, с целью сравнения хлоритов разного генезиса, привлекался каменный материал, характеризующий слабо выветрелые серпентиниты и секущие их дайки, из центрального (приподнятого) блока массива (обр. 7-14-1/3, 7-14-2/5).

Следует отметить, что в породах остаточной коры выветривания объекта № 6 (особенно в верхних горизонтах) могут присутствовать единичные новообразованные минералы такие, как пирит, сидерит, манганокальцит и другие. Это свидетельствует о том, что на объекте № 6 присутствовала шамозитовая зона, которая вскоре была эродирована в олигоцене.

Из всех образцов были изготовлены прозрачно-полированные шлифы, на базе которых с помощью поляризационного микроскопа изучался минеральный состав пород и их структурно-текстурные особенности. Для диагностики минералов использовались данные лазерной рамановской Исследования спектрокопии. проводились с помощью спектрометра/микроскопа Renishaw InVia с фокусным расстоянием 250 мм в Горном университете (аналитик Е.А. Васильев). Для получения рамановских спектров применялся полупроводниковый лазер 785 нм мощностью 300 мВт и дифракционная решетка 1200 штр/мм, что обеспечивало спектральное разрешение 1.2 см⁻¹ при шаге измерения 1 см⁻¹. Режим съемки: 50% мощность лазера, длиннофокусный объектив L50/0.5, спектральный диапазон 90-700 см⁻¹, время накопления спектра 50 с при пяти повторениях.
Состав минералов анализировался при помощи растрового JSM-6510LA электронного микроскопа с энергодисперсионным спектрометром JED-2200 (JEOL) в ИГГД РАН (аналитик О.Л. Галанкина). Условия съемки: ускоряющее напряжение 20 кВ, ток 1.5 нА, ZAF-метод коррекции матричных эффектов. В качестве эталонных образцов для определения содержаний элементов применялись оливин (Si, Mg, Fe), керсутит (Al), диопсид (Ca), жадеит (Na), ортоклаз (K), спессартин (Mn), TiO (Ti).

Рис. 4.1. Фрагмент остаточной коры выветривания гипербазитов Кольского массива (а) и геологические разрезы по линиям 125 (б) и 127 (в) (по Л.И. Кононовой и с упрощениями): 1 – охры и обохренные серпентиниты; 2 – А.А.Урусову, 1973, выщелоченные породы, развитые по гранодиоритам и кварцевым диоритам (а – плотные, δ – рыхлые); 3 – керолитизированные серпентиниты (*a* – плотные, δ – рыхлые из зоны выщелачивания); 4 – дезинтегрированные серпентиниты; 5 – дезинтегрированные гранодиориты и кварцевые диориты; 6 – дайки диоритов и других пород; 7 – мезокайнозойские отложения; 8–15 – эпипородные изменения: силицификация (8), обохривание (9), керолитизация (10), гидрохлоритизация (11), нонтронитизация (12); монтмориллонитизация (13); оталькование (14), карбонатизация (15); 16 – изолинии; 17 – геологических разрезов; – разведочные скважины; 19 номер линии 18 скважины/высотная отметка устья скважины; 20 – глубина бурения скважины; 21 – место и глубина отбора изучаемых хлоритов; 22 – геологические контакты. На врезке: 23 – номера месторождений, в том числе 7 – Еловское, 6 – Катасьминское, 8 – Устейское; 24 – контуры серпентинитов Кольского массива по данным магниторазведки и бурения; 25-26 – палеозойские образования. Для каждой скважины указаны: номер, высотная отметка устья и глубина бурения.

Описание образцов

Обр. 6-7-54. Плотная порода светло-зеленовато-серого цвета (рис. 4.2, *a*), нацело сложенная агрегатом беспорядочно-ориентированных хлоритовых пластинок размером от 0.02 до 0.1 мм (рис. 4.2, *б*–*в*). Рамановский спектр пластинок (рис. 4.3) демонстрирует типичные для хлорита пики 678, 550, 354 и 204 см⁻¹ (Wenner D.B., 1971). В породе наблюдается примесь хромистого

магнетита, пирита и сидерита. Магнетит образует рассеянную вкрапленность мелких (< 0.03 мм) зерен (рис. 4.2, ϵ) и более крупные (до 0.5 мм) зональные выделения, сохранившие в центральных частях реликты алюмохромита (рис. 4.2, ϵ). Пирит – неправильные по форме зерна размером до 0.2 мм с содержанием Ni до 1.4 мас.%. Сидерит (Fe_{0.67-0.69}Mg_{0.17-0.14}Ca_{0.08-0.07}Mn_{0.06-0.05})_{0.98-0.95}CO₃ – скопления мелких (0.3 мм) конкреций (рис. 4.2, ϵ).

Рис. 4.2. Образец породы 6-7-54 из верхнего горизонта остаточной коры выветривания (зона выщелоченных серпентинитов). Микрофотографии получены в обратно-отраженных электронах (*б*-*е*). Точки наблюдений соответствуют номерам анализов в табл. 3 (Приложение 3). Прочие объяснения см. в тексте.

Рис. 4.3. Рамановский спектр изученного хлорита из обр.6-7-54 и эталонный спектр из базы данных RRUF (Lafuente B., 2015).

Обр. 6-9-65. Порода зеленовато-желтоватой окраски (рис. 4.4, а), 0.05 - 0.1сложенная пластинками хлорита размером ДО MM, сцементированными тонкозернистым (< 0.01 мм) глинистым веществом (рис. 4.4. $\delta - e$), состоящим никелистого ИЗ смектита $(Ca_{0.08}K_{0.03})_{0.11}(Al_{1.42}Mg_{0.69}Ni_{0.18}Fe_{0.03})_{2.40}(Al_{0.26}Si_{3.74})_4O_{10}(OH)_2 \cdot nH_2O$ (n = 15) и никелистого минерала, отвечающего по составу ди-триоктаэдрическому хлориту $Ca_{0.03}(Mg_{2.86}Al_{2.03}Ni_{0.37}Fe_{0.06})_{5.33}(Al_{0.76}Si_{3.24})_4O_{10}(OH)_8$ (n = 7).

Рис. 4.4. Образец породы 6-9-65 из верхнего горизонта остаточной коры выветривания (зона выщелоченных серпентинитов). Микрофотографии получены в проходящем свете (δ – без анализатора, e–e – с анализатором) и в обратно-отраженных электронах (∂ –e). г.в. – глинистое вещество. Точки наблюдений соответствуют номерам анализов в табл. 3 (Приложение 3). На рис. ∂ т.н. 001, 006 – хлорит, т.н. 002 – смектит, т.н. 008 – ди-триоктаэдрический хлорит; на рис. e – т.н. 020, 022 – хлорит, т.н. 018, 023 – смектит. Прочие объяснения см. в тексте.

Обр. 6-9-95. Порода желтовато-коричневой окраски (рис. 4.5, *a*), почти нацело сложенная пластинками хлорита размером до 0.2–0.3 мм (рис. 4.5, δ – ∂). В породе наблюдаются скопления мелких (0.1 мм) зерен хромистого магнетита, микропрожилки манганокальцита (Ca_{0.55–0.68}Mn_{0.37–0.25}Mg_{0.08–0.07})_{1.00}CO₃ и тонкая (3–5 мкм) вкрапленность гематита (рис. 4.5, δ , *e*, *e*). Диагностика хлорита и гематита подтверждается данными рамановской спектроскопии (рис. 4.6).

Рис. 4.5. Образец породы 6-9-95 из нижнего горизонта остаточной коры выветривания (зона выщелоченных серпентинитов). Микрофотографии получены в проходящем свете (δ – без анализатора, e-e – с анализатором) и в обратно-отраженных электронах ($\partial -e$). На рис. ∂ все точки наблюдений – хлорит. Прочие объяснения см. в тексте.

Рис. 4.6. Рамановский спектр изученного хлорита из обр.6-9-95 и эталонный спектр из базы данных RRUF (Lafuente B., 2015).

Обр. 6-9-97. Порода по облику и минеральному составу сходная с предыдущей (рис. 4.7, *a-в*). Наряду с преобладающим хлоритом, содержит разрозненные чешуйки талька ($Mg_{2.79}Fe_{0.18}Ni_{0.05}Al_{0.03}$)_{3.05}($Al_{0.12}Si_{3.88}$)_{4.0}O₁₀(OH)₂ (*n* = 4), мелкие зерна кварца и хромистого магнетита.

Рис. 4.7. Образец породы 6-9-97 из нижнего горизонта остаточной коры выветривания (зона выщелоченных серпентинитов). Микрофотографии получены в проходящем свете (*б* – с анализатором) и в обратно-отраженных электронах (*в*). На рис. *в* – т.н. 023–0.27, 029 – хлорит, т.н. 028 – тальк. Прочие объяснения см. в тексте.

Обр. 6-4-96. Кавернозная порода неравномерно-желто-зеленой окраски (рис. 4.8, *a*). Сложена тонкозернистым глинистым веществом с пятнами неидентифицированных оксидов марганца, выделениями микро-шестоватого и микро-сферолитового кварца (рис. 4.8, *б-д*) и скоплениями мелких (< 0.1 мм) пластинок Ni-содержащих слоистых силикатов, приуроченных к пустотам выщелачивания (рис. 4.8, *б, с, е*), состав которых отвечает: 1) минералу ряда Al-содержащий никелистый серпентин – бриндлеит с формулой Ca_{0.02}(Mg_{3.30}Ni_{1.21}Al_{0.87}Fe_{0.23}Mn_{0.03})_{5.64}(Al_{0.18}Si_{3.82})₄O₁₀(OH)₈ (*n* = 12) и характерным для бриндлеита дефицитом содержаний элементов, занимающих октаэдрические позиции (Maksimovic Z., 1978); 2) никелевому

117

Рис. 4.8. Образец породы 6-4-96 из нижнего горизонта остаточной коры выветривания (зона керолитизированных серпентинитов). Микрофотографии в проходящем свете с анализатором (б-г) и в обратно-отраженных электронах (d-e). Tlc – никелевый тальк (уиллемсеит), Srp – минерал ряда Al–Ni-содержащий серпентин – бриндлеит, г.в. – глинистое вещество. Прочие объяснения см. в тексте.

Обр. 6-4-107. Порода желтовато-зеленого цвета (рис. 4.9, *a*), нацело сложенная агрегатом мелких (0.1–0.2 мм) пластинок минерала зеленовато- и красновато-коричневых тонов окраски, насыщенного пылевидными 4.9, *a–e*). (рис. По включениями гематита химическому составу $(Mg_{3,65}Fe_{1,07}Ni_{0,79}Al_{0,51}Mn_{0,01}Ca_{0,01})_{6,04}(Al_{0,68}Si_{3,32})_4O_{10}(OH)_8$ (n = 15)ЭТОТ слоистый силикат близок к смешаннослойным образованиям типа хлорит/корренсит или хлорит/серпентин (Ryan P.C., 1997; Shau Y.H., 1990). На структурное сходство со смешаннослойными фазами указывает его рамановский спектр (рис. 4.10), где проявлены характеристические пики вермикулита и минерала с регулярным (1:1) переслаиванием хлоритовых и серпентиновых слоев – доциита.

Рис. 4.9. Образец породы 6-4-107 из нижнего горизонта остаточной коры выветривания (зона керолитизированных серпентинитов). Микрофотографии в проходящем свете с анализатором (б) и в обратно-отраженных электронах (в). Chl/Srp – смешаннослойный минерал типа хлорит/серпентин (?). Прочие объяснения см. в тексте.

Рис. 4.10. Рамановский спектр изученной смешанно-слойной фазы из обр.6-4-107 и эталонный спектр из базы данных RRUF (Lafuente B., 2015).

Обр. 7-14-1/3. Серпентинит с петельчатой структурой, содержащий скопления кристаллов реликтового авгита и вкрапленность мелких зерен хромита, рассеченный тонкими (1 мм) карбонатными прожилками. Состав слагающего большую часть образца, отвечает серпентина, формуле $(Mg_{5.55}Fe_{0.35}Ni_{0.01}Al_{0.01})_{5.92}Si_{4.04}O_{10}(OH)_{8}$ (n = 2).Прожилки образованы крупнокристаллическим кальцитом $(Ca_{0.96}Mg_{0.04})_{1.00}CO_3$ (n = 6) и агрегатами мелких (0.1–0.2 мм) чечевицеподобных кристаллов доломита, состав которого отвечает теоретической формуле.

Обр. 7-14-2/5. Мелкозернистое роговообманковое габбро, рассеченное антофиллитовыми и карбонатными прожилками. Сложено лейстовидными кристаллами зонального плагиоклаза, состав которого меняется от анортита (An_{92–93}) до лабрадора (An₆₅), амфиболом ряда магнезиочермакит–паргасит и подчиненным биотитом. Содержит вторичные минералы – актинолит и хлорит, замещающие роговую обманку. Прожилки имеют зональное строение и образованы кальцитом (Ca_{0.98}Mn_{0.02})_{1.00}CO₃, слагающим осевые

119

зоны, с которым ассоциирует серпентин, сферолитовые агрегаты которого нарастают на стенки минерализованных трещин.

4.2. Вариации химического состава хлоритов из различных зон профилей выветривания гипербазитов.

Хлориты – минералы из группы слоистых силикатов, структура обусловлена чередованием талькоподобных (2:1)которых И бруситоподобных (гидроксильных) слоев, в состав которых входят катионы в октаэдрической *(M)* и тетраэдрической (*T*) координации. Согласно С.В. Бейли (Bailey S.W., 1988), базовые слои, образующие структуру хлорита (политипа IIb), содержат следующие виды позиций: тальковый слой – $M1(M2)_2[(T1)_2(T2)_2]O_{10}(OH)_2,$ бруситовый слой $(M3)_2M4(OH)_6$. Результирующая формула хлорита (Lanari P., 2014): структурная $M1(M2)_2(M3)_2M4[(T1)_2(T2)_2O_{10}](OH)_8$, где две позиции T1 целиком занимает Si; в двух позициях T2 он частично замещается Al, который (наряду с Fe³⁺) также входит в позицию M4; в позиции M1 и в четырех позициях M2, M3 располагаются Al, Fe²⁺ и Mg (Trincal V., 2016; Vidal O., 2001). Фемические компоненты могут замещаться Cr, Mn, V, Ni, Cu, Zn, Ti, Li (Zane A., 1998).

Для хлоритов характерны три вида изоморфных замещений: 1) между компонентами $Fe^{2+} = Mg$ фемическими (FM), 2) чермаковское $Al^{IV}Al^{VI} = Si + (Mg)$ Fe^{2+}) (TK) 3) ди-триоктаэдрическое И 3(Mg, Fe^{2+}) = 2(Al³⁺ + Fe³⁺)^{VI} + \Box или 2(Mg, Fe²⁺)= Si + \Box (DT), где \Box октаэдрические вакансии, приуроченные к позиции M1 (Hillier S., 1991; Vidal O., 2001). В зависимости от степени заполнения октаэдрических позиций в структуре минерала, выделяют (Bailey S.W., 1988; Wiewióra A., 1990; Zane A., 1998): триоктаэдрические (сумма октаэдрических катионов $R^{VI} = 6-5$, сумма трехвалентных катионов в октаэдрических позициях $[R^{3+}]^{VI} = 0 - 2$, $\Box = 0 - 1$ k.d.), ди-триоктаэдрические ($R^{VI} = 5.5 - 4.5$, $[R^{3+}]^{VI} = 2 - 3$, $\Box = 0.5 - 1.5$ к.ф.) и диоктаэдрические ($R^{VI} = 5 - 4$, $[R^{3+}]^{VI} = 3 - 5$, $\Box = 1 - 2$ к.ф.) хлориты (для безводной основы О = 14). Примерами триоктаэдрических крайние изоморфных серий: хлоритов служат члены клинохлор

 $Mg_5Al[AlSi_3O_{10}](OH)_8$, амезит $Mg_4Al_2[Al_2Si_2O_{10}](OH)_8$, дафнит (шамозит) Fe₅Al[AlSi_3O_{10}](OH)_8, нимит Ni₅Al[AlSi_3O_{10}](OH)_8, пеннантит Mn₅Al[AlSi_3O_{10}](OH)_8. Типичными представителями ди-триоктаэдрических хлоритов выступают кукеит LiAl₄ \Box [AlSi_3O_{10}](OH)_8 и судоит Mg_2Al_3 \Box [AlSi_3O_{10}](OH)_8, диоктаэдрических – донбассит Al_{4.33} \Box 1.67[AlSi_3O_{10}](OH)_8.

В никеленосных корах выветривания хлориты тесно ассоциируют с смектитами, смешаннослойными серпентином, тальком, силикатами (хлоритом-вермикулитом, тосудитом, доциитом и др.). Нередко это приводит к трудностям в диагностике минералов по микрозондовым данным, не подкрепленным результатами детального *in-situ* анализа их кристаллической С учетом сказанного, при изучении состава хлоритов структуры. специальное внимание уделяется разбраковке микрозондовых анализов. С этой целью были использованы следующие ограничения: 1) в расчет брались только анализы достаточно крупных (>0.05 мм) пластинчатых кристаллов и исключались анализы тонкозернистых (< 0.01 мм) смесей, 2) исключались анализы с содержанием Al^{IV} < 0.6 к.ф. (Foster M. D., 1962) и суммой $CaO + Na_2O + K_2O > 1$ мас. % (Bourdelle F., 2013). Кристаллохимические формулы рассчитывались на 14 атомов кислорода в предположении, что все железо является двухвалентным. Для сравнения хлоритов из остаточной коры выветривания с хлоритами из преобразованной коры привлекались ранее опубликованные данные (Лазаренков В.Г., 2011).

С представительной выборкой анализов хлоритов, выбранных для термометрических исследований и удовлетворяющих перечисленным критериям, можно ознакомиться в приложении 3.

По данным проведенного исследования хлориты из остаточной коры выветривания (обр. 6-7-54, 6-9-65, 6-9-95, 6-9-97) отличаются высокой магнезиальностью (Mg# 0.78–0.96) и никеленосностью (NiO 0.19–21.1 мас.%) примесей 6-9-95. подчиненной роли титана (обр. 6-9-65: при $TiO_2 < 1.3$ мас.%) и хрома (Cr₂O₃ < 0.78 мас.%). Между содержаниями NiO и MgO наблюдается отрицательная корреляция, наиболее отчетливо

проявленная в обр. 6-9-95 (r = -0.99). При этом, как видно из корреляционного графика (рис. 4.11, *a*), наблюдается дискретность в расположении точек низко- и высоконикелистых хлоритов (обр. 6-9-95, 6-9-

97). С учетом близости ионных радиусов Ni и Mg (0.78 A по В. Гольдшмидту) и отсутствия значимой связи между содержаниями NiO и FeO (рис. 4.11, δ), это свидетельствует о возможности изоморфного замещении магния никелем. Аналогичная корреляция между NiO и Al₂O₃ (r = -0.80; рис. 4.11, ϵ) интерпретируется как результат более низкой температуры кристаллизации высоконикелистых хлоритов (см. ниже).

Рис. 4.11. Корреляционные зависимости между компонентами хлоритов из остаточной коры выветривания.

Содержание Si в хлоритах повышено и варьирует от 2.95 до 3.74 к.ф. На диаграмме М. Хея (Неу М.Н., 1954) (рис. 4.12) фигуративные точки хлоритов с пониженным содержанием Ni (< 0.22 к.ф.) попадают в поле клинохлора, с повышенным (0.22–1.54 к.ф.) – в поля пеннина и, частично, талько-хлорита.

Рис. 4.12. Классификационная диаграмма состава хлоритов Кольского массива по Хею (Hey M.H., 1954). 1-7 – хлориты из остаточной коры выветривания: 1-2 – обр. 6-7-54, Ni < 3 мас. % (1), Ni > 3 мас. % (2); 3 – обр. 6-9-65; 4-5 – обр. 6-9-95, Ni < 3 мас. % (4), Ni > 3 мас. % (5); 6-7 – обр. 6-9-97, Ni < 3 мас. % (6), Ni > 3 мас. % (7); 8-9 – хлориты из преобразованной коры выветривания: Ni < 3 мас. % (8), Ni > 3 мас. % (9); 10 – хлорит из образца роговообманкового габбро (обр. 7-14-2/5).

Содержание Al понижено и изменяется от 1.28 до 2.66 к.ф. При этом, если в хлоритах, обедненных никелем, содержания Al^{VI} и Al^{IV} примерно равны (составляют 0.87–1.27 и 0.84–1.04 к.ф. соответственно), то в хлоритах, обогащенных никелем, Al^{VI} (0.96– 2.04 к.ф.) существенно преобладает над Al^{IV} (0.25–0.88 к.ф.; рис. 4.13, что характерно для диагенетических хлоритов (Hillier S., 1991).

По содержаниям R^{v_1} (5.52–5.98 к.ф.) и $[R^{3+}]^{v_1}$ (0.87–2.04 к.ф.) почти все изученные хлориты (за исключением четырех анализов из обр. 6-7-54 с R^{v_1} равным 5.28–5.47) относятся к триоктаэдрической группе (рис. 4.14).

Рис. 4.13. Диаграмма соотношения октаэдрического и тетраэдрического алюминия в составе хлоритов Кольского массива. Условные обозначения – см. на рис. 4.12.

На диаграмме R^{2+} —Si (Wiewióra A., 1990) точки анализов образуют «облако», вытянутое вдоль вектора R^{VI} . При этом хлориты, обедненные никелем, отличаются повышенной, а хлориты, обогащенные никелем, – пониженной степенью заполнения октаэдрических позиций (рис. 4.15).

Рис. 4.14. Классификационная диаграмма состава хлоритов Кольского массива по Бейли (Bailey S.W., 1988). Условные обозначения – см. на рис. 4.12.

Рис. 4.15. Классификационная *R*²⁺–**Si** диаграмма состава хлоритов по Вейсу (Wiewióra A., 1990). Условные обозначения – см. на рис. 4.12.

Хлориты из *преобразованной* коры выветривания делятся на две группы: 1) высоко магнезиальные (Mg# 0.87) из нижней серпентинитовой зоны и 2) магнезиально-железистые (Mg# 0.59–0.36) из верхней шамозитовой зоны. Содержание NiO в них варьирует от 0 до 7.9 мас.%. Корреляции в парах NiO–MgO, NiO–FeO и NiO–Al₂O₃, отсутствуют или проявлены неотчетливо. По содержаниям Si (2.84–3.26 к.ф.), Al (1.87–2.27 к.ф.), [R^{3+}]^{VI} (1.02–1.74 к.ф.) и соотношению Al^{VI} и Al^{IV} эти хлориты близки к хлоритам из остаточной коры. На диаграмме М. Хея они попадают в поля диабантита, пикнохлорита и брунсвигита (рис. 4.12).

Хлорит из образца роговообманкового габбро (обр. 7-14-2/5) обладает умеренной магнезиальностью (Mg# 0.53–0.49) и не содержит примеси никеля. Это касается в том числе анализов с повышенными содержаниями К и Na, которые не попали в окончательную выборку. Содержание Si в хлорите изменяется от 2.81 до 3.01 к.ф. На диаграмме М. Хея он попадает в поле пикнохлорита. Содержание Al варьирует в пределах 2.25–2.53 к.ф. при близком соотношении Al^{VI} и Al^{IV}, содержание [R^{3+}]^{VI} – в пределах 1.27–1.38 к.ф., R^{VI} – в пределах 5.76–5.90, что роднит этот хлорит с низконикелистыми хлоритами из остаточной и преобразованной кор выветривания (рис. 4.13, рис. 4.14, рис. 4.15).

4.3. Термометрия хлоритов

Существует два подхода к термометрии хлоритов: эмпирический и термодинамический (Vidal O., 2001).

Первый подход основан на выявленной опытным путем зависимости, согласно которой содержание Al^{IV} в хлоритах увеличивается с ростом температуры. В рамках этого подхода предложена серия калибровочных уравнений хлоритового геотермометра (De Caritat P., 1993; Yavuz F., 2015), выведенных путем регрессионного анализа данных по составам хлоритов из пород, температура формирования которых определялась независимыми методами (в том числе непосредственно измерялась в современных геотермальных системах). Данный подход ограничен пониженными температурами (< 300 °C) и демонстрирует зависимость температурных оценок от состава пород, выбранных для исследования (De Caritat P., 1993). Примером служит геотермометр М. Кателино (Cathelineau M., 1988).

$$T = -61.92 + 322 \cdot \text{Al}^{\text{IV}} (^{\text{o}}\text{C}), \tag{1}$$

проградуированный для температурного интервала 130–320 °С на основе данных по составам хлоритов (Al^{IV} 0.59–1.93 к.ф.) из метатерригенных и метавулканических пород среднего и кислого состава, слагающих современные геотермальные поля западного побережья Мексики и США.

Второй подход использует калибровочные уравнения, основанные на расчетах дивариантных равновесий с участием твердого раствора хлорита, состав которого выражается линейной комбинацией конечных членов изоморфных серий. С учетом сложного характера изоморфных замещений в хлорите, выбор минеральных компонентов не является однозначным. Ж.Л. Уолш (Walshe J.L., 1986) для градуировки геотермометра проанализировал минальную реакцию

$$3Prl + 5Afcl^{1} = 6Cln + 14SiO_{2} + 8H_{2}O,$$
 (2)

описывающую (с учетом изоморфизма фемических компонентов) равновесие хлорит–кварц в присутствии воды в рамках идеального четверного раствора Afcl–Cln–Daph–Prl. Такой способ имеет свои ограничения, поскольку не учитывает амезитовый компонент и во многих случаях приводит к появлению в составе твердого раствора хлорита отрицательных содержаний Afcl минала (Inoue A., 2009). В работах О. Видала с соавторами (Lanari P., 2014; Vidal O., 2001, 2005, 2006) рассмотрена реакция

$$2Cln + 3Sud = 4Ame + 7SiO_2 + 4H_2O,$$
 (3)

описывающая обсуждаемое равновесие в рамках твердого раствора Cln– Daph–Sud–Ame при условии, что Si < 3.0 к.ф. Подобное условие хорошо соблюдается для высокоглиноземистых хлоритов из метаморфических пород, но исключает из рассмотрения многие диагенетические хлориты, у которых Si > 3.0 к.ф. Поэтому А. Иноуэ с соавторами (Inoue A., 2009) для описания равновесий с участием триоктаэдрических хлоритов в процессах диагенеза и низкотемпературного (200–300 °C) метаморфизма предложили использовать реакцию

$$3Sud + Afcl = 3Ame + 7SiO_2 + 4H_2O, \tag{4}$$

где компонентами твердого раствора хлорита выступают Afcl, Ame, Sud и Daph. Калибровочное уравнение, рассчитанное на базе этой реакции в

¹ Afcl – «безалюминиевый хлорит» Mg₆Si₄O₁₀(OH)₈. Обозначения прочих миналов приводятся по Д. Уитни и Б. Ивансу (Whitney D.L. 2010).

предположении, что Al, Mg, Fe²⁺ случайным образом распределены по октаэдрическим позициям, лучше всего воспроизводит температуры кристаллизации хлоритов, оцененные независимыми методами, в том случае, когда учитывается содержание Fe³⁺ (замещающего в равной степени Al^{IV} и Al^{VI}) в хлорите.

Окисное железо является характерным компонентом низкотемпературных хлоритов. Его содержание в них обычно варьирует в пределах 10-30 % от содержания общего железа (Inoue A., 2009). Вместе с тем, аналитическое определение этого компонента в хлорите, особенно на микроуровне, связано с большими методическим трудностями. Принимая во внимание данное обстоятельство, Ф. Бурдель с соавторами (Bourdelle F., 2013) рассмотрели возможность построения хлоритового геотермометра, нечувствительного к вариациям содержания Fe³⁺ в хлорите. С этой целью они использовали представительную выборку анализов триоктаэдрических хлоритов, образованных в интервале температур 50–350 °C при P < 4 кбар и характеризующихся высокими содержаниями Si и октаэдрических вакансий. Для вывода калибровочного уравнения исследователи предложили модель, описывающую хлорит как идеальный твердый раствор (Mg, Fe)-Afcl-(Mg, Fe)-Ame – (Mg, Fe)-Sud с упорядоченным распределением Al, Mg, Fe^{2+} и неупорядоченным – Fe³⁺ по октаэдрическим позициям. Уравнение имеет вид

$$T = \frac{9400}{23.4 - \log K}$$
 (K), (5)

где *К* – константа равновесия реакции (4) – равна произведению активностей участников реакции

$$K = \frac{a_{\text{Mg-Ame}} \cdot a_{\text{SiO}_2}^7 \cdot a_{\text{H}_2\text{O}}^4}{a_{\text{Mg-Afcl}} \cdot a_{\text{Mg-Sud}}^3}$$

С помощью записанного уравнения можно рассчитать температуру кристаллизации хлорита при условии, что $a_{sio_2} = 1$, $a_{H_{2O}} = 1$, $Fe_{tot} = Fe^{2+}$, P < 4 кбар. Графическим выражением геотермометра (5) служит диаграмма R^{2+} –Si (Wiewióra A., 1990) с нанесенными на нее изотермами (Bourdelle F., 2015).

Геотермометр (5) с успехом использован для оценки температур образования хлоритов (включая марганцовистые, хромистые и никелистые) из низко-среднетемпературных палео-гидротермальных систем и рудных месторождений (Chinchilla D., 2016; Hinsken T., 2017; Legros H., 2018; Mamadou M.M., 2016). Хотя Mn, Cr и Ni не входят в число компонентов, учитываемых моделью твердого раствора хлорита, положенной в основу этого геотермометра, независимость его показаний от соотношения фемических компонентов предполагает (как и в случае геотермометра Кателино) независимость температурных оценок также и от содержаний компонентов, замещающих в октаэдрических позициях Mg и Fe²⁺.

Таким образом, применение уравнений (1) и (5) дает следующие результаты. Как показывают расчеты (приложение 3), температуры остаточной И преобразованной кристаллизации хлоритов ИЗ кор выветривания, оцененные с помощью геотермометра Кателино, существенно большинство отличаются. Подавляющее температурных не оценок интервале 50 270 °C. При наиболее заключено В OT ЛО ЭТОМ высокотемпературными (170–310 °C) оказываются низконикелистые хлориты. В сходных условиях (260-320 °C) кристаллизовался хлорит из роговообманкового габбро. образца Высоконикелистые хлориты демонстрируют постепенное уменьшение температуры образования (от 250 до 50 °C) с ростом содержания никеля (рис. 4.16).

Близкими свойствами обладает и распределение температурных оценок, полученных с помощью геотермометра Бурделя. Большинство из них

Рис. 4.16. Зависимость между содержанием никеля в хлоритах и температурой их образования, оцененной с помощью хлоритового геотермометра (Cathelineau M., 1988). Условные обозначения – см. на рис. 4.12.

заключено в пределах от 50 до 300 °C. Для высоконикелистых хлоритов температурный интервал кристаллизации составляет 50–250 °C со статистическим максимумом в области 75–125 °C, для низконикелистых хлоритов – 125–300 и более °C с максимумом в области 175–300 °C. Последний интервал одновременно характеризует условия кристаллизации хлорита из габбро.

диаграмме Бурделя-Кателино (рис. 4.17) изотермы, Ha начиная примерно с 200 °C, располагаются почти под прямым углом к вектору R^{VI} . Подобная ориентировка изолиний отражает преобладающее влияние содержания вакансий (расчетной величины, которая находится по формуле = $(Al^{VI} - Al^{IV})/2$) на показания геотермометра. Вблизи линии $\Box = 0$ изотермы сгущаются, что приводит к снижению точности оценивания. В этой области сосредоточены в том числе точки низконикелистых хлоритов с $\Box < 0.04$, для которых рассчитанные Т превышают верхний предел значения применимости геотермометра (350 °C) и не могут поэтому рассматриваться как корректные оценки температуры их кристаллизации.

Рис. 4.17. Диаграмма R²⁺–Si (Wiewióra A., 1990) с изотермами, построенными при помощи хлоритового геотермометра (Bourdelle F., 2015). Условные обозначения – см. на рис. 4.12.

Результаты хлоритовой термометрии Кольского массива поднимают верхний температурный предел кристаллизации никеленосных силикатов, слагающих коры выветривания, до 150 и более °С.

Ниже приведены рисунки 4.18, 4.19 на которых показаны взаимоотношения сосуществующих обедненных и обогащенных никелем хлоритов.

Рис. 4.18. Взаимоотношение сосуществующих обедненных и обогащенных никелем хлоритов в образце 6-9-95 из остаточной коры выветривания (температуры по

131

Cathelineau (1988): в точках 018, 019, 020 - 235°С, 237°С, 217°С; в точках 016, 017, 021, 022, 023 – 110°С, 115°С, 117°С, 127°С, 133°С).

Рис. 4.19. Взаимоотношение сосуществующих обедненных и обогащенных никелем хлоритов в образце 6-7-54 из остаточной коры выветривания (температуры по Bourdelle et al. (2013): в точках 004, 006, 007 - 56°C, 83°C, 94°C; в точках 005, 008, 009 – 127°C, 149°C, 156°C; в точке 002 - 227 °C).

Таким образом, в одних и тех же образцах могут быть как высоконикелистые, так и низконикелистые хлориты. Следует отметить, что с глубиной содержание никеля в хлоритах (так же как и температура их образования) изменяется не закономерно. Это говорит о том, что никеленосная кора выветривания развивалась по подготовленному и проработанному гидротермальной деятельностью неоднородному гипербазитовому субстрату, о чем также свидетельствуют «очаговый», штокверковый характер рудных зон, брекчиевые текстуры руд и крайне неоднородный минеральный и химический состав оруденения.

Выводы по главе 4.

Хлориты из остаточной коры выветривания отличаются высокой 1. магнезиальностью и никеленосностью, повышенным содеражанием кремния Хлориты ИЗ преобразованной пониженным алюминия. коры И выветривания делятся на две группы: 1) высоко магнезиальные из нижней 2) серпентинитовой зоны И верхней магнезиально-железистые ИЗ

шамозитовой зоны. По содержаниям R^{v_1} и $[R^{3+}]^{v_1}$ хлориты относятся к триоктаэдрической группе.

2. Температуры кристаллизации хлоритов из остаточной и преобразованной кор выветривания, оцененные с помощью геотермометров М. Кателино (1988), Ф. Бурделя и М. Кателино (2015), существенно не отличаются.

3. Для хлоритов температурный низконикелистых интервал кристаллизации составляет 125–300 °C И более со статистическим максимумом в области 175-300 °C, для высоконикелистых хлоритов - 50-250 °С со статистическим максимумом в области 75-125 °С, причем содержание никеля в хлоритах увеличивается с понижением температуры их образования.

4. В одних и тех же образцах сосуществуют как низконикелистые, так и высоконикелистые хлориты. При этом с глубиной содержания никеля в хлоритах (так же как и температура их образования) изменяются не закономерно. Это говорит о том, что образование коры выветривания связано с гидротермальной деятельностью, которая имела «очаговый» характер, проявляясь лишь на отдельных участках.

Формулировка 2 защищаемого положения

По данным термометрии хлоритов формирование профиля выветривания происходило по гипербазитам, подвергнутых воздействию гидротермальных растворов двух температурных интервалов 75-125 °C и 175-300 °C. При этом содержание никеля в хлоритах повышается с понижением температуры их образования.

5. РЕГИОНАЛЬНЫЙ НИЗКОГРАДНЫЙ МЕТАМОРФИЗМ КАК РУДОПОДГОТОВИТЕЛЬНЫЙ ПРОЦЕСС НА ТЕРРИТОРИИ СЕРОВСКО-МАУКСКОГО ОФИОЛИТОВОГО ПОЯСА.

В настоящее время проблема регенерированных рудных концентраций является недостаточно хорошо изученной. Это проблема связей процессов метаморфизма и рудогенеза, происхождения метаморфогенногидротермальных руд. Данная тема впервые была затронута крупнейшим специалистом в области рудных месторождений Г. Шнейдерхёном.

Региональный метаморфизм – одно из масштабных геологических явлений в литосфере Земли. Анализируя литературные источники на тему метаморфизма, можно заметить, что детально изучены высокоградные метаморфиты, гораздо менее изучены низкоградные. Продукты низкоградного метаморфизма (НГМ) достаточно широко проявлены в орогенных областях и на древних платформах в тех участках, которые платобазальтами значительной покрыты мощности или В которые внедрились крупные интрузивы базитового и гипербазитового состава (например, Бушвелд и др.).

Одним из крупнейших специалистов в области НГМ является Э.М.Спиридонов. В его многочисленных работах (Спиридонов Э.М., 2000, 2008, 2017) приводятся различные варианты проявления данного процесса. Как отмечает Э.М. Спиридонов, процессы НГМ в условиях цеолитовой фации (110–290°С, 0,5–4,0 кб, т.е. глубины от ~ 2 до 10–12 км), пренитпумпеллиитовой фации (250–330°С, 2–6 кб, т.е. глубины от 5 до ~ 20 км), пумпеллиит-актинолитовой фации проявлены достаточно широко в верхней части литосферы (Спиридонов Э.М., 1999). Данные виды фаций хорошо распространены в орогенных областях и в низах плитного комплекса платформ. Поскольку НГМ флюидодоминирующий (Спиридонов Э.М., 2009), постольку метапороды обычно не раздавлены и не рассланцованы, степень метаморфических преобразований крайне изменчива, даже на коротких расстояниях, процессы НГМ зачастую неизохимичны, что чётко отличает НГМ от метаморфизма высокоградного.

5.1. Свидетельства участия эндогенных процессов в формировании кор выветривания на Урале

Триасовый период в целом характеризуется высоким стоянием Уральского орогена и развитием аридных климатов. Но его основной особенностью процессов является широкое проявление тектономагматической активизации, сопровождавшейся глубинными расколами земной коры, заложением по восточным склонам Урала структурнотектонических депрессий и излияниями лав преимущественно андезитбазальтового состава. М.С. Рапопорт в одной из своих работ (Рапопорт М.С., 1998) отмечал, что с раннего триаса в пределах Урала и Зауралья неоднократно усиливались тектонические движения со сменой напряжений сжатия и расширения. В раннеюрский период растяжение сменилось сжатием, когда на крайнем северо-западе Урала сформировались пайхоиды и Чернышева, на самом Урале подверглись гряда a дислокациям раннемезозойские угленосные впадины.

Напряженная тектоническая обстановка, очевидно, мало благоприятствовала развитию площадных кор выветривания. Однако анализ материалов показывает, что максимум тектонической активности имел место в начале триасового периода. Уже к позднему триасу площади активизации были пенепленизированы. В бортах депрессий появились латеритные бассейны (бокситоносные) коры выветривания, а на днищах угленакопления.

Характерной особенностью гипергенных покровов этого времени является распространение на заключительном этапе тектоно-магматической активизации гидротермальных процессов. В местах внедрения рудоносных гидротермальных растворов в зону гипергенеза возникали термальногипергенные тела, заключающие в себе месторождения золота, никеля, редких земель и других полезных ископаемых.

Примером подобных образований могут быть оксидно-силикатные месторождения Урала. Рассмотрим основные свидетельства участия

эндогенных процессов в формировании и развитии кор выветривания на территории Урала.

В 1932 г. Д.Г. Ульянов, описывая гидротермальный процесс отложений сульфидных руд на Халиловском месторождений (Южный Урал), отмечал: «Конечная стадия гидротермального процесса характеризуется выпадением более высокотемпературных кварца и опала..., к возникающим при последнем процессе прожилкам модификаций кремнезема местами приурочен в больших количествах другой никелевый минерал, по-видимому, гарниерит. Последний кристаллизовался позднее сульфида никеля, и его образование возможно объясняется исчезновением в составе растворов серы (вся была связана в первой стадии с никелем)» (Халиловские..., 1932).

Наиболее определенно о вероятном гидротермальном происхождении никелевых месторождений на Урале, относимых к группе линейнотрещинных, линейно-карстовых, неоднократно высказывалась В.Н. Разумова. «О возможно гидротермальном генезисе кварцгарниеритовых руд в зонах глубокого выполнения кварцевых полостей», писал А.С. Вершинин.

В развитие идей А.С. Вершинина в 1994-1998 гг. Б.М. Михайловым были проведены исследования на Черемшанском месторождении (Средний Урал). Методом вакуумной дескрипетации была определена температура образования кварца, метасоматически замещающего мрамор. Установлены три температурных генерации: 440-640 °C, 180-300 °C, 10-70 °C (Михайлов Б.М., 1997). Эти данные, практически, повторили впервые проведенные на образцах из того же карьера Л.М. Петруховой и А.С. Вершининым определения температур кристаллизации кварца (Петруха, Вершинин, 1982).

В 1999 году Н.И. Воронцова в результате кропотливых аналитических исследований и статистической обработки материалов предшественников пришла к выводу о «низкотемпературном гидротермальном процессе образования метасоматитов» Уфалейского месторождения (Средний Урал).

Геохимические данные, демонстрирующие значительный привнос в метасоматиты Уфалейского месторождения ряда халькофильных элементов, говорят о том, что этот привнос осуществлялся гидротермальными растворами (Воронцова Н.И., 1999).

Резюмируя вышеописанное, можно сделать выводы о несомненном участии эндогенных процессов при формировании никеленосных кор выветривания гипербазитов на территории Урала.

5.2. Региональный низкоградный метаморфизм и его роль в формировании и развитии кор выветривания гипербазитов Серовско-Маукского офиолитового пояса.

Расчеты, произведенные автором ПО различным хлоритовым впервые количественную оценку геотермометрам, дают температур формирования пород, слагающих кору выветривания гипербазитов Серовскоофиолитового пояса. А именно, формирование профиля Маукского выветривания происходило при участии гидротермальных растворов в двух температурных интервалах 75-125 °С и 175-300 °С.

Данные расчеты могут быть использованы для уточнения генезиса коры выветривания в свете дискуссии, развернувшейся вокруг вопроса о роли эндогенных процессов при возникновении гипергенных никелевых месторождений Урала (Витовская И.В., 1974; Разумова В.Н., 1977: Михайлов Б.М., 2003; Воронцова Н.И., 2009). С 1977 года В.Н. Разумовой (Разумова В.Н., 1977) обсуждается роль гидротермальных процессов в рудогенезе. Для «гидротермально-вадозовой» или «термальноee Б.М. Михайлову (Михайлов Б.М., 2003) гипергенной» ПО модели образования силикатных никелевых руд служили структурно-геологические признаки: тесная связь никелевого оруденения с зонами тектонического дробления (особенно отчетливо проявленная в случае кор трещинного типа), сходство разрезов «древних кор выветривания» и ореолов выщелачивания эпитермальных месторождений, однотипность стадийности «гипергенной» и гидротермальной минерализации, большая мощность «древних кор» и др. Однако, те же самые признаки, например, приуроченность гипергенных

никелевых месторождений к разломам и синтектонический характер жильной гарниеритовой минерализации, привлекались для объяснения повышенной миграционной способности никеля в экзогенных условиях (Бугельский Ю.Ю., 1990; Cluzel D., 2008; Evans B.W., 2004).

При микроскопическом изучении пород из различных зон профиля выветривания было выявлено присутствие таких сульфидных минералов как, халькопирит, пирит, пирротин и миллерит. Эти минералы наиболее часто встречаются в трещинах дезинтегрированных и выщелоченных серпентинитов. Халькопирит, пирротин, пирит в виде зерен размером до 1 мм неправильной и кубической формы ассоциируют с миллеритов, который имеет вид игольчатых кристаллов, часто собранных в радиально-лучистые агрегаты. Данный факт свидетельствует об участии *гидротермальных процессов* в формировании никеленосных кор выветривания.

К числу других минералогических свидетельств участия эндогенных процессов в формировании никеленосных кор выветривания гипербазитов Серовско-Маукского офиолитового пояса могут быть последовательные преобразования реликтовых минералов субстрата. Данный вопрос подробно был изложен в 3 главе (3.4. Последовательность минералообразования в гипербазитах Серовско-Маукского офиолитового пояса). Согласно составленной автором генетической классификации основных минералов и последовательности преобразования реликтовых минералов субстрата можно сделать вывод об участии низкоградного метаморфизма в формировании коры выветривания гипербазитов Серовско-Маукского офиолитового пояса. При микроскопическом изучении пород из зон дезинтеграции и частично из зон выщелачивания хорошо видно полное или частичное замещение серпентина, бастита, амфиболов хлоритом и тальком:

1) серпентин-хлорит-тальк,

- 1) бастит-хлорит-тальк,
- 2) амфибол → хлорит → тальк.

Следует отметить, что последовательность преобразования минералов субстрата на этапе низкоградного метаморфизма не обязательно должна быть развивающимся до конца процессом с образованием конечного талька. Причиной проявления регионального низкоградного метаморфизма, по мнению автора, является раннемезозойская тектоно-магматическая активизация структуры Урала, возникшая в результате трансрегионального рифтогенеза и траппового магматизма. Тектонические движения были проявлены сменой напряжений сжатия и растяжения, которые впоследствии оказали значительное влияние на активизацию тафрогенного внутриплитного магматизма и эндогенных рудообразующих процессов.

Вышесказанное позволяет рассматривать процесс формирования «гипергенных» никелевых месторождений, ассоциированных с массивами Серовско-Маукского офиолитового пояса (или по крайней мере ранние ЭТОГО процесса), как возможное проявление низкоградного сталии цеолитовой фации (Спиридонов Э.М., 2017) на раннеметаморфизма мезозойском этапе тектоно-магматической активизации региона (Рапопорт М.С., 1998), а сами месторождения – как эпигенетические или месторождения комбинированного генезиса (Сагдиева Р.К. и др., 2016).

Следует отметить, что низкоградный метаморфизм в истории развития гипербазитов играет важную роль, поскольку является рудоподготовительным процессом. Суть данного процесса сводится к тому, что происходит масштабная проработка субстрата для последующих процессов, в том числе гидротермальных и экзогенных процессов.

Мнения исследователей относительно вклада мезозойских тектонических движений в современную структуру Урала и мезозойского рудогенеза в его региональную металлогению расходятся. Большинство из них весьма высоко оценивают этот вклад. Такой же точки зрения придерживается и автор настоящей работы.

Таким образом, полученные автором выводы позволяют сказать, что гидротермальные процессы и региональный низкоградный метаморфизм не

только предшествовали латеритизации, но и имели существенное значение для концентрации никеля в коре выветривания.

Формулировка 3 защищаемого положения

Формирование никеленосных кор выветривания гипербазитовых массивов Серовско-Маукского офиолитового пояса, происходило после регионального низкоградного метаморфизма в условиях цеолитовой фации, приводившего к подготовке рудоносного тектонизированного субстрата месторождений, в раннемезозойском этапе тектономагматической активизации региона.

5.3. Основные этапы становления гипербазитовых массивов и эволюции кор выветривания на территории Серовско-Маукского офиолитового пояса.

В данном разделе рассматриваются важнейшие этапы становления гипербазитовых массивов и никеленосных кор выветривания гипербазитов Серовско-Маукского офиолитового пояса. При этом автор отмечает важность метаморфизма цеолитовой фации, регионального низкоградного раннемезозойской проявленного В результате тектоно-магматической активизации структуры Урала в качестве рудоподготовительного процесса. Рассмотрим основные события, связанные с эволюцией гипербазитовых массивов и кор выветривания.

Палеозойский этап в развитии изучаемой территории характеризуется наибольшим разнообразием обстановок формирования магматических, осадочных и метаморфических пород. Океанскому спредингу, приведшему к образованию Уральского палеоокеана, предшествовал позднекембрийскотремадокский рифтогенез, оставивший след В виде осалочных И вулканогенных формаций соответствующего возраста и состава, а также грабеноподобных структур (Пучков В.Н., 2000). С процессом спрединга связано формирование офиолитовой ассоциации, в том числе изучаемых в дунит-гарцбургитовых Серовско-Маукского данной работе массивов

офиолитового пояса – Кольского, Устейского и Вагранского – на следующем этапе послуживших фундаментом энсиматических островных дуг (рис.5.1). Мантийно-реститовые образования генерировались в астеносфере и были изначально обогащены никелем.

В среднем ордовике на этапе спрединга мантийно-реститовые образования подверглись серпентинизации.

В позднем ордовике в океаническом бассейне заложилась палеозона субдукции (Иванов К. С., 1998; Пучков В.Н., 2000; Смирнов В.Н., 2006), продуцировавшая на Среднем Урале вулканиты Восточно-Уральской, а на Южном – Магнитогорской мегазон (Пейве А.В., 1977).

Рис.5.1. Палеотектоническая схема территории Урала и прилегающих районов для среднего ордовика – раннего силура (по О.А. Кондиайн, Н.А. Румянцевой) Восточно-Европейский континент: 1 – области слабого поднятия; 2 – области слабого опускания; Уральская подвижная система: 3 – континентальный склон; 4 –

океанические области, сменяемые островными дугами; 6 – микроконтиненты (a – Центрально-Тагильский, δ – Магнитогорский, Восточно-Уральский); Ишим-Каратауская подвижная система: 7 – островные дуги, сменяемые орогенными поднятиями; 8 – орогенные поднятия; 9 – разрывные нарушения, происшедшие после рассматриваемого интервала времени: a – Главный Уральский разлом; δ – нарушения, определившие современные границы формационных зон; s – прочие; 10 – границы Уральской подвижной системы в рассматриваемый интервал времени: a – западная, связанная с резким изменением мощности отложений и фаций, δ – восточная, совпадающая с разрывными нарушениями.

В начале эмса обстановка в океанической области резко изменилась (рис.5.2). Прекращается активная вулканическая деятельность в островных дугах, происходит формирование поднятий.

Рис.5.2. Палеотектоническая схема территории Урала и прилегающих районов для эмского – живетского веков (сост. О.А. Кондиайн, Н.А. Румянцевой)

1, 2 – Восточно-Европейский континент: 1 – области поднятия; 2 – области опускания, покрытые морем; 3–9 – Уральская подвижная система: 3, 4 – континентальный склон; 3 – приподнятые районы, 4 – районы погружения, 5 – островные

дуги, 6 – новообразованные окраинные моря, сменившиеся островными дугами, 7 – море на отмерших островных дугах, 8 – поднятия (низкогорные хребты) на отмерших островных дугах, 9 – микроконтинент с цепочками островов; 10 – Ишим-Каратауская подвижная система, ороген; 11 – эпикаледонская область завершенной складчатости; 12 – разрывные нарушения, происшедшие после рассматриваемого интервала времени: а – Главный Уральский разлом; б – нарушения, определившие современные границы формационных зон; в – прочие; 13 – границы Уральской подвижной системы в рассматриваемый интервал времени: а – западная, связанная с резким изменением мощности отложений и фаций, б – восточная, совпадающая с разрывными нарушениями.

среднего карбона на изучаемой территории Co окончательно известково-щелочной прекращается магматизм, указывающий на субдукционные процессы. Режим активной континентальной окраины сменяется коллизионным, начинается жесткая коллизия – Восточно-Европейской и Сибирской плит. Результатом коллизии стал Уральский ороген (рис.5.3). В завершение коллизионного этапа в поздней перми произошла обдукция, в том числе изучаемых гипербазитовых массивов – Кольского, Устейского и Вагранского. В процессе обдукции массивы подверглись поднятию.

В самом начале триаса территория восточного склона Урала и прилегающей части Западной Сибири была вовлечена в новый своеобразный тектонический который сопровождался трансрегиональным режим, рифтогенезом, проявившимся на огромной территории – от Забайкалья до Северной Атлантики. Процесс интенсивного тангенциального сжатия, свойственного орогенной стадии, сменился слабым тангенциальным растяжением, в условиях которого начали формироваться многочисленные грабены. Рифтогенез сопровождался магматической деятельностью траппового типа, продолжавшейся в течение раннего и, в меньшей степени, среднего триаса.

Рис.5.3. Палеотектоническая схема территории Урала и прилегающих районов для московского – гжельского веков карбона (сост. О.А. Кондиайн, Н.А. Румянцевой)

Восточно-Европейский континент: 1 – области слабого опускания; 2 – отсутствие отложений рассматриваемого возраста. Уральская подвижная система. Западная внешняя мегазона: 3 – области интенсивного опускания с накоплением флишоидных осадков; 4 – области поднятия. Внутренние мегазоны: 5 – области интенсивного предскладчатого поднятия; 6 – области поднятий, сменяемых опусканиями; 7 – межгорные молассовые впадины, заложились: a – в середине башкирского века, б – в начале московского века, e – в середине московского века. Восточная периферическая мегазона: 8 – чередование слабых поднятий и опусканий; 9 – разрывные нарушения, происшедшие после рассматриваемого интервала времени: a – Главный Уральский разлом; б – нарушения, определившие современные границы формационных зон; e – прочие; 10 – границы Уральской подвижной системы в рассматриваемый интервал времени: a – западная, связанная с разрывными нарушениями.

144
Автор разделяет идею М.С. Рапопорта о значительном вкладе раннемезозойской тектоно-магматической активизации и сопровождавших ее эндогенных рудно-магматических и рудно-метасоматических процессов в минерагению Урала, в том числе на изучаемой территории (Рапопорт М.С., 1998). По мнению автора, она способствовала гидротермальным процессам, привносившим и перерапределявшим рудные компоненты в изучаемых массивах. Еще Б.М. Михайлов неоднократно отмечал в своих работах об участии термальных вод глубинного заложения в формировании кор выветривания, а также о привносе в них никеля со стороны (Михайлов Б.М., 1986, 2000).

Кроме того, автор настоящей работы предполагает проявление на этой стадии регионального низкоградного метаморфизма цеолитовой фации, который способствовал рудоподготовке субстрата для образования последующих никеленосных кор выветривания.

На рубеже среднего и позднего триаса эомезозойские горы Урала были преобразованы в новую структурную поверхность – пенеплен. Климат в это время был умеренно теплым гумидным, в результате чего получило развитие латеритное корообразование, проявившееся в основном в Уральской межгорной мегазоне (рис.5.4), в пределах которой находятся изучаемые массивы. Влажный климат способствовал заболачиванию территории, в результате чего коры выветривания формировались в аноксической (глеевой) обстановке. Вслед за этим на территории началась активизация рифтогенеза, результатом которой стало погружение дна грабенов Уральской межгорной мегазоны на 600-650 м (Кондиайн О.А., 2011) с образованием Замарайской, Сосьвинской и Катасьминской депрессий, в которых коры выветривания были погребены под толщей осадков и сохранены от денудации.

Приблизительно на рубеже триаса и юры режим тангенциального растяжения сменился кратковременно проявившимся режимом сжатия, с которым связаны дислокации в грабенах, и особенно в их краевых частях, приведшие к образованию складчато-блоковых структур и предскладчатых надвигов с амплитудой до 3 км.

Рис.5.4. Палеотектоническая схема территории Урала и прилегающих районов для раннего-среднего триаса (сост. О.А. Кондиайн)

1, 2 – Европейский континент: 1 – слабое опускание, 2 – слабое поднятие; 3-9 – Уральская подвижная система на поздней (орогенной) стадии развития (восточная часть системы шириной до 250-300 км задвинута Главным Уральским надвигом): 3 – интенсивное поднятие (ороген), 4 – интенсивное опускание (краевой прогиб), 5 – районы предполагаемого продолжения краевого прогиба, 6 – районы проявления гравитационнооползневой складчатости в среднем триасе, 7 – западная граница распространения складчатости, совпадающая с осью краевого прогиба в раннем-среднем триасе, 8 – Главный Уральский надвиг, совпадающий в раннем-среднем триасе с западной границей Урало-Сибирской «молодой» платформы, другие главнейшие 9 _ надвиги послесреднетриасового возраста; 10-15 – Урало-Сибирская эпигерцинская «молодая» платформа (область завершенной складчатости) на стадии становления: 10 – Уральская межгорная мегазона умеренного поднятия, 11 – Восточно-Уральская горная мегазона интенсивного поднятия, 12, 13 – Зауральская мегазона: 12 – умеренные поднятия, 13 – рифты, грабены и прогибы, выполненные базальт-риолитовой и терригенно-глинистой формациями. 14 – Челябинский (Бичурско-Копейский) сдвиг, подвижки по которому происходили в раннем-среднем триасе, 15 – восточная граница Уральской складчатой системы в фундаменте Урало-Сибирской платформы; 16 – площади распространения ранне-среднетриасовых базальтов за пределами Зауральской мегазоны: а – достоверные, б – предполагаемые; 17 – границы распространения нижне-среднетриасовых отложений, мегазон, краевого прогиба, платформенных поднятий.

В ранней юре условия тангенциального сжатия снова сменились режимом растяжения, сопровождавшимся формированием новых наложенных обширных, преимущественно брахиморфных, межгорных впадин.

Позднеюрская арктическая трангрессия не затронула изучаемую территорию, о чем свидетельствует отсутствие оторьинской, маурыньинской, лопсинской, федоровской свит, характерных для территорий, затронутых трансгрессией на данном этапе.

Меловой период характеризуется новыми трансгрессиями. Максимума трансгрессия достигла в коньяк-сантоне (рис.5.5). Таким образом, первая морская трансгрессия, дошедшая до изучаемой территории, была в позднемеловую эпоху. Она сопровождалась отложением камышловской свиты.

В палеоцене-эоцене произошли три крупных трансгрессии, разделенные кратковременными частичными регрессиями (рис.5.5). Продуктами первой трансгрессии являются отложения марсятской и ивдельской свит, второй трансгрессии – отложения серовской и ирбитской свит, а третьей – отложения чеганской свиты.

В олигоцене происходило разноамплитудное поднятие, моря покинули рассматриваемую территорию, и на их месте активизировались эрозионные процессы. Отсутствие шамозитовой зоны коры выветривания в южной части Кольского массива, по-видимому, связано с этими процессами. Остальные участки оставались погребенными и избежали эрозии.

1, 2 – площади, заливавшиеся морем: 1 – в поздней юре, 2 – в позднем мелу; 3 – граница распространения морских палеогеновых отложений; 4, 5 – направления трансгрессий и возраст прорыва вод по возникавшим проливам: 4 – теплых, 5 – холодных; 6-8 – площади, не заливавшиеся морем в юре и мелу: 6, 7 – выступа доюрских образований (фундамента и доплитного яруса Урало-Сибирской платформы): 6 - не перекрывавшиеся континентальными отложениями, 7 _ перекрывавшиеся континентальными отложениями мезозоя и палеогена, 8 – выступы доюрских образований за пределами Урало-Сибирской платформы; 9 – предположительный (по мнению некоторых геологов) пролив позднемелового возраста: а – в пределах Урало-Сибирской платформы, б – за ее пределами; 10 – западная граница Урало-Сибирской эпигерцинской «молодой» платформы; 11 – граница современного распространения чехла Урало-Сибирской платформы; 12 – северная граница распространения теплолюбивой морской фауны и флоры позднего мела; 13 – границы распространения морских трансгрессий и континентальных отложений: a – достоверные, δ – предполагаемые; 14 – позднемеловые и палеогеновые лагуны, в том числе железоносные: а – Аятская, б – Серовская; 15 – импактные структуры: 1 – Карская, 2 – Рогозинская.

148

В миоцене – раннем плиоцене происходило медленное затухание эрозионных процессов, выполаживание рельефа, заболачивание водоемов.

Интервал времени поздний плиоцен – квартер относится к новейшему периоду развития, в ходе которого происходит новейший орогенез. Уральские горы становятся областью интенсивной денудации, в результате которой ранее погребенные коры выветривания частично выводятся на поверхность Земли.

Основные события, связанные с эволюцией гипербазитовых массивов, кор выветривания (рудных компонентов) сведены в таблицу 5.1.

Таблица 5.1. Важнейшие эпизоды становления гипербазитовых массивов и никеленосных кор выветривания Серовско-Маукского офиолитового пояса.

№ п/п	Время	Процессы	Эволюция массивов / коры выветривания / рудного никеля
1	€ 3- O ₁	Континентальный рифтогенез.	
2	O2	Океанский спрединг, формирование массивов Серовско-Маукского офиолитового пояса - Кольского, Устейского и Вагранского.	Серпентинизация массивов, перераспределение рудного никеля.
3	O3	Заложение палеозоны субдукции.	
4	D1	Прекращение активной вулканической деятель- ности в островных дугах, формирование поднятий.	
5	C ₂	Прекращение субдукции, коллизия двух плит - Восточно-Европейской и Сибирской.	
6	P3	Завершение коллизии, обдукция, в т.ч. массивов Серовско-Маукского офиолитового пояса.	

7	Tı	Начало развития «молодой» эпигерцинской Урало-Сибирской платформы (области завершенной складчатости) с наложенным трансрегио- нальным рифтогенезом, следствием чего предпо- ложительно явился региональный низкоград- ный метаморфизм цеоли- товой фации восточного склона Северного Урала.	Привнос и перераспределение рудного никеля в массивах гидротермальными растворами. Предполагается рудоподготовление массивов региональным низко- градным метаморфизмом.
8	T ₂₋₃ - J	Латеритное корообразование. Заболачивание территории. Аноксическая обстановка.	Образование шамозитовой зоны в профиле выветривания гипербазитов.
9	T3-J1	Режим тангенциального сжатия, образование складчато-блоковых структур и предскладчатых надвигов. Образование депрессий - Катасьминской, Сосьвинской, Замарайской.	
10	K ₂	Первая морская трансгрессия (отложения камышловской свиты).	
11	₽1-2	Три морские трансгрессии (отложения марсятской, ивдельской, серовской, ирбитской и чеганской свит).	Погребение коры выветривания под толщей осадков.
12	₽3	Разноамплитудное поднятие территории, эрозионные процессы.	Отсутствие шамозитовой зоны в профиле выветривания объекта №6.
13	N1-2	Медленное затухание эрозионных процессов, выполаживание рельефа, заболачивание водоемов.	
14	N ₂ -Q	Новейший орогенез. Интенсивная денудация.	Коры выветривания частично выводятся на поверхность.

Выводы по главе 5.

1. Процессы НГМ в условиях цеолитовой фации, пренитпумпеллиитовой фации, пумпеллиит-актинолитовой фации проявлены достаточно широко в верхней части литосферы – в орогенных областях и на древних платформах в тех участках, которые покрыты платобазальтами значительной мощности или в которые внедрились крупные интрузивы базитового и гипербазитового состава.

2. В формировании никеленосных кор выветривания гипербазитов Серовско-Маукского офиолитового пояса принимали участие не только гидротермальные процессы, но и региональный низкорадный метаморфизм цеолитовой фации. К числу свидетельств участия гидротермальных процессов отнесены присутствие сульфидных минералов (халькопирит, пирит, пирротин И миллерит) в трещинах дезинтегрированных И выщелоченных серпентинитов, а также результаты термометрии хлоритов. К участия НГМ могут быть последовательные преобразования числу реликтовых минералов субстрата, а именно полное или частичное замещение серпентина, бастита, амфиболов хлоритом и тальком.

3. Проявление регионального низкоградного метаморфизма цеолитовой фации оценивается как рудоподготовительный процесс при формировании кор выветривания гипербазитов Серовско-Маукского офиолитового пояса.

151

ЗАКЛЮЧЕНИЕ.

B результате проведенных комплексных исследований лана генетическая характеристика кор выветривания гипербазитов Серовско-Маукского офиолитового пояса. Показано, что на шести объектах (№№ 2, 3, 4, 6, 7, 8) с развитием кор выветривания прослеживается различная гипергенная метасоматическая зональность. Различие заключается в присутствии шамозитовой зоны, образованной в условиях аноксической обстановки и замещающей полностью или частично нижележащие оксидножелезную, нонтронитовую и серпентинитовую зоны. Таким образом, на объектах №№ 2, 3, 4, 7, 8 выявлен преобразованный инфильтрационнометасоматический (шамозитовый) профиль выветривания, тогда как на объекте №6 – древний остаточный профиль выветривания. Данный факт объясняется проявлением в олигоцене разноамплитудного поднятия территории и сопровождением его эрозионными процессами, которые, повидимому, полностью эродировали шамозитовую зону на объекте № 6.

Впервые в ходе исследований по результатам термометрии хлоритов конкретизированы температурные условия формирования кор выветривания. Как показали расчеты подавляющее большинство температурных оценок 50 заключено В интервале от до 270 °C. При этом наиболее высокотемпературными (170-310 °C) оказались низконикелистые хлориты. В то время как высоконикелистые хлориты продемонстрировали постепенное уменьшение температуры образования (от 250 до 50 °C) с ростом содержания никеля. Выявленная отчетливая обратная зависимость между температурой образования хлоритов и содержанием в них никеля подчеркивает важную роль температуры, как одного из факторов рудогенеза. Таким образом, на основе полученных расчетов автором сделан вывод о несомненном участии формировании гидротермальных процессов В никеленосных кор выветривания гипербазитов Серовско-Маукского офиолитового пояса.

Впервые автором сделан вывод о проявлении на изучаемой территории регионального низкоградного метаморфизма цеолитовой фации в результате

раннемезозойской тектоно-магматической активизации структуры Урала, который способствовал рудоподготовке субстрата для образования последующих никеленосных кор выветривания. Низкоградный метаморфизм отражен в последовательном замещении серпентина, бастита, амфиболов такими минералами, как хлорит и тальк. Отмечена важность данного процесса в истории развития гипербазитов и кор выветривания, поскольку он связан с рудоподготовительным процессом.

Практическое значение полученных результатов исследования заключаются в том, что выявленные типы профилей выветривания на объектах способствовать эффективности могут повышению геологоразведочных работ на никель. Кроме этого, полученные данные приближают исследователей к пониманию значительно специфики литогенеза на территории Серовско-Маукского офиолитового пояса, а также позволяют реконструировать с принципиально новых позиций процессы перераспределения и накопления рудного никеля.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Алфимова Н.А. Раннедокембрийские коры выветривания Карелии. Геологическое строение, химический состав и условия формирования. Автореферат дисс. кан-да геолого-минералогических наук. СПБ: Изд-во ИГД РАН, 2007. – 18 с.

2. Алфимова Н.А., Климова Е.Е., Фелицын С.Б. Фракционирование РЗЭ при кислотном выщелачивании гранитоидов / Алфимова Н.А., Климова Е.В., Фелицын С.Б. // Литология и полезные ископаемые, 2011. – №4. – С. 439-442.

3. Берхин С.И., Бородина К.Г., Бугельский Ю.Ю. Никеленосные коры выветривания Урала / Берхин С.И., Бородина К.Г., Бугельский Ю.Ю. М.: Наука, 1970. – 286 с.

4. Богословский Н.А. О некоторых явлениях выветривания в области Русской равнины / Богословский Н.А. // Изв. Геол. Комитета. – СПБ, 1899. – Т.18. – №5. – С. 235-273.

5. Бородина К.Г., Вохмятина Н.Д. Особенности строения и вещественный состав коры выветривания серпентинитов Еловского участка Кольского массива гипербазитов на Северном Урале / Коры выветривания Урала. Саратов: Изд-во Саратов. ун-та, 1969. – С. 254–258.

6. Бородина К.Г. Вторичная минерализация никеленосных кор выветривания и ее роль в локализации промышленных залежей никелевых руд / Бородина К.Г. // Минерагения зоны гипергенеза. М.: Наука, 1980. – С.101-118.

7. Бугельский Ю.Ю., Витовская И.В., Никитина А.П., Слукин А.Д., Новиков А.М. Экзогенные рудообразующие системы кор выветривания / Бугельский Ю.Ю., Витовская И.В., Никитина А.П., Слукин А.Д., Новиков А.М. М.: Наука, 1990. – 365 с.

8. Витовская И.В., Никитина А.П. Типоморфизм минералов как индикатор условий формирования никеленосных и бокситоносных кор выветривания / Витовская И.В., Никитина А.П. // Кора выветривания. М.: Наука, 1986. – Вып. 19. – С. 32-41.

9. Витовская И.В., Лавренова Н.Н. О величине привноса никеля при формировании силикатно-никелевых месторождений / Витовская И.В., Лавренова Н.Н. // Рудоносные коры выветривания. – М.: Наука, 1974. – С. 120-125.

10. Воронцова Н.И., Таловина И.В., Лазаренков В.Г., Рыжкова С.О., Мезенцева О.П. Перспективы никелевой промышленности Урала в свете изучения структур рудных полей гипергенных никелевых месторождений / Воронцова Н.И., Таловина И.В., Лазаренков В.Г., Рыжкова С.О., Мезенцева О.П. // Записки Горного института. СПГГИ (ТУ). – 2009. – Т. 183. – С. 78-87.

11. Вторушин А.В., Журавлева Н.А., Хионина Е.В. Методика изучения вещественного состава древних кор выветривания ультраосновных пород Урала / Вторушин А.В., Журавлева Н.А., Хионина Е.В. // Геология и

полезные ископаемые Урала / Изд-во Свердловского Горного института. – 1966. – Вып. №48. – С.146-154.

12. Вторушин А.В., Журавлева Н.А. Мезозойские железные руды Серовского района на Северном Урале / Вторушин А.В., Журавлева Н.А. М.: Недра, 1967. – 162 с.

13. Додатко А.Д. Древние коры выветривания и методы их изучения / Додатко А.Д. // Учебное пособие. – Днепропетровск: ДГУ, 2004. – 106 с.

14. Жариков В.А. Метасоматизм и метасоматические породы / Жариков В.А. – М.: Научный мир, 1998. – 489 с.

15. Заварицкий А.Н. О некоторых особенностях колчеданных месторождений Блява, Сибай, Учалы Заварицкий А.Н. // Изв. АН СССР, - 1943. – №1. – С.17-26.

16. Иванов К. С. Основные черты геологической истории (1,6-0,2 млрд лет) и строение Урала: Дис...доктора геол.-мин. наук в форме научного доклада. Екатеринбург: УрО РАН, 1998. – 252 с.

17. Илалова Р.К., Таловина И.В. Характеристика дайкового комплекса жильных пород и его влияние на никелевое оруденение в триас-юрских корах выветривания ультраосновных массивов на Северном Урале (Серовский район) // Илалова Р.К., Таловина И.В. // ГИАБ, 2017. – №6.

18. Илалова Р.К. Характеристика дайкового комплекса жильных пород и его влияние на никелевое оруденение в триас-юрских корах выветривания ультраосновных массивов на Северном Урале (Серовский район) / Илалова Р.К. // Сборник материалов V Международной конференции молодых ученых и специалистов памяти академика А.П.Карпинского 28.02-03.03.2017 г., ВСЕГЕИ, Санкт-Петербург, 2017 г. – С.47-51.

19. Илалова Р.К. Генезис коры выветривания гипербазитов в южной части Северного Урала: специфика континентального выветривания в мезозойскую эру геологической истории Земли / Илалова Р.К. // Сборник статей международной научно-практической конференции (19 апреля 2017 г., г. Москва). Москва: РИО ЕФИР, 2017. – С. 21-27.

20. Илалова Р.К. Континентальное выветривание в мезозое: особенности минерального состава профилей и распределения редкоземельных элементов / Илалова Р.К. // ГИАБ, 2017. - №9.

21. Илалова Р.К., Таловина И.В. Особенности строения триас-юрских никеленосных кор выветривания ультраосновных массивов на Северном Урале (Серовский район) / Илалова Р.К., Таловина И.В. // ГИАБ, 2017. – №5.

22. Илалова Р.К. Анализ строения и генезис триас-юрских никеленосных кор выветривания в южной части Северного Урала / Илалова Р.К. // Сборник статей V Международной научно-практической конференции (19 декабря 2016 г., г. Москва). – Москва: РИО ЕФИР, 2016. – С. 92-98.

23. Илалова Р.К., Гульбин Ю.Л. Особенности химического состава и термометрия хлоритов остаточной коры выветривания Кольского массива (Северный Урал) / Илалова Р.К., Гульбин Ю.Л. // Сборник материалов Юбилейного съезда РМО «200 лет РМО» 10-13 октября 2017 г. СПб: Горный университет, 2017. – С. 226-228.

24. Илалова Р.К., Таловина И.В., Дурягина А.М., Никифорова В.С. Региональный низкоградный метаморфизм как рудоподготовительный процесс при формировании никеленосных кор выветривания восточного склона Северного Урала / Илалова Р.К., Таловина И.В., Дурягина А.М., Никифорова В.С. // ГИАБ, 2018. – №6.

25. Илалова Р.К., Таловина И.В., Дурягина А.М., Никифорова В.С. Раннемезозойская тектоно-магматическая активизация восточного склона Северного Урала и ее влияние на формирование никеленосныхкор выветривания / Илалова Р.К., Таловина И.В., Дурягина А.М., Никифорова В.С. // ГИАБ, 2018. – №6.

26. Кательников А.Р., Сук Н.И., Котельникова З.А., Щекина Т.И., Калинин Г.М. Минеральные геотермометры для низкотемпературных парагенезисов / Кательников А.Р., Сук Н.И., Котельникова З.А., Щекина Т.И., Калинин Г.М. // Вестник ОНЗ РАН. – Черноголовка, 2012. – Т. 4.

27. Кондиайн О.А., Беляев А.А., Мельгунов А.Н., Румянцева Н.А. Геология и полезные ископаемые России: Запад России и Урал / Кондиайн О.А., Беляев А.А., Мельгунов А.Н., Румянцева Н.А. – Санкт-Петербург: ВСЕГЕИ, 2011. – 582 с.

28. Крутов Г.А. Месторождения кобальта / Крутов Г.А. М., 1959. – 232 с.

29. Куземкина Е.Н. Особенности минерального состава коры выветривания Кольского массива ультраосновных пород / Куземкина Е.Н. // Коры выветривания Урала. Изд-во Саратовского университета, 1969. – С.241-245.

30. Куземкина Е.Н. Минералы наложенных восстановительных процессов в коре выветривания Урала / Куземкина Е.Н. // Никеленосные коры выветривания Урала. – Москва: Наука, 1970. – С. 202-217.

31. Лазаренков В.Г., Таловина И.В., Воронцова Н.И., Мезенцева О.П., Рыжкова С.О. Никелевые хлориты оксидно-силикатных никелевых месторождений Урала / Лазаренков В.Г., Таловина И.В., Воронцова Н.И., Мезенцева О.П., Рыжкова С.О. // Литология и полезные ископаемые, 2011. – № 3. – С. 1–10.

32. Ланда Э.А., Казак А.П., Щербакова С.В. К проблеме геохимической типизации альпинотипных и концентрически-зональных массивов Урала (по данным изучения распределения РЗЭ) / Ланда Э.А., Казак А.П., Щербакова С.В. // Геохимические типы и рудоносность базитов-гипербазитов гранулит-гнейсовых комплексов зеленокаменных поясов офиолитов. – Иркутск, 1990. – С. 21-26.

33. Мезенцева О.П., Таловина И.В. Величина δ34S в миллерите и генезис шамозитовых никелевых руд Еловского месторождения, Северный Урал / Мезенцева О.П., Таловина И.В. // Записки Горного института, 2011. – Т. 189. – С. 58-61.

34. Михайлов Б.М., Иванов Л.А. Проблемы Fe-Co-Ni месторождения Буруктал, Южный Урал / Михайлов Б.М., Иванов Л.А. // Прикладная металлогения и недропользование. – 2003. – № 1. – С. 5-12.

35. Михайлов Б.М. О генезисе никелевых руд Уфалея (Средний Урал) / Михайлов Б.М. // Литология и полезные ископаемые. – 1997. – №1. – С. 3-13.
36. Михайлов Б.М. Никелевые руды Урала / Михайлов Б.М. // Литология и полезные ископаемые. – 2000. – №4. – С. 397-412.

37. Пейве А.В., Иванов С.Н., Нечеухин В.М., Перфильев А.С., Пучков В.Н. Тектоника Урала (объяснительная записка к тектонической карте Урала масштаба 1:1 000 000) / Пейве А.В., Иванов С.Н., Нечеухин В.М., Перфильев А.С., Пучков В.Н. – М.: Наука, 1977. – 120 с.

38. Перельман А.И. Геохимия элементов в зоне гипергенеза / Перельман А.И. – М.: Недра, 1972. – 288 с.

39. Петров Г.А., Наседкина В.А. К вопросу о происхождении и возрасте обломочных серпентинитов восточного склона Урала. Типы седиментогенеза и литогенезаи их эволюция в истории Земли / Петров Г.А., Наседкина В.А. // Мат-лы 5-го Всероссийского литологического совещания (Екатеринбург, 14-16 октября 2008 г.). – Екатеринбург: ИГГ УрО РАН, 2008. – Т. II. – С. 160-163.

40. Пилюгин А.Г., Таловина И.В., Воронцова Н.И., Рыжкова С.О., Мезенцева О.П. Характер распределения редкоземельных элементов в рудах Еловского и Буруктальского гипергенных никелевых месторождений / Пилюгин А.Г., Таловина И.В., Воронцова Н.И., Рыжкова С.О., Мезенцева О.П. // Записки горного института. – СПб, 2011.

41. Пучков В.Н. Палеогеодинамика Южного и Среднего Урала / Пучков В.Н. – Уфа: Даурия. – 2000. – 145 с.

42. Разумова В.Н. Древние коры выветривания и гидротермальный процесс / Разумова В.Н. – Москва: Наука, 1977. – 136 с.

43. Рапопорт М.С, Баранников А.Г. Мезозойская эндогенная минерагения Урала (некоторые особенности и проблемы) / Рапопорт М.С, Баранников А.Г. // Изв. Урал. гос. горно-геол. акад. Сер. геология и геофизика, 1998. – Вып. 8. – С. 89–94.

44. Рыжкова С.О., Лазаренков В.Г., Таловина И.В., Воронцова Н.И., Мезенцева О.П., Пилюгин А.Г. Отрицательная цериевая и европиевая аномалии в гипергенных метасоматитах и рудах Буруктальского никелевого месторождения, Южный Урал / Рыжкова С.О., Лазаренков В.Г., Таловина И.В., Воронцова Н.И., Мезенцева О.П., Пилюгин А.Г. // Материалы XI Съезда РМО «Современная минералогия: от теории к практике». – СПб, 2010. – С. 117-119.

45. Савко А.Д., Бугельский Ю.Ю., Новиков В.М., Слукин А.Д., Шевырев Л.Т. Коры выветривания и связанные с ними ползные ископаемые / Савко А.Д., Бугельский Ю.Ю., Новиков В.М., Слукин А.Д., Шевырев Л.Т. – Воронеж: Истоки, 2007. – 355 с.

46. Сагдиева Р.К., Таловина И.В., Воронцова Н.И. Современные взгляды на формирование никеленосных кор выветривания ультраосновных массивов на Урале / Сагдиева Р.К., Таловина И.В., Воронцова Н.И. // Горный информационно-аналитический бюллетень. – 2016. – Вып. № 6. – С. 278–288.

47. Скляров Е.В. Интерпретация геохимических данных / Скляров Е.В. – М., 2001. – 288 с.

48. Скублов С.Г. Геохимия редкоземельных элементов в породообразующих метаморфических минералах / Скублов С.Г. – СПб: Наука, 2005. – 147 с.

49. Смирнов В.Н., Бороздина Г.Н., Десятниченко Л.И., Иванов К.С., Медведева Т.Ю., Фадеичева И.Ф. О времни раскрытия Уральского палеоокеана (биостратиграфические и геохимические данные) / Смирнов В.Н., Бороздина Г.Н., Десятниченко Л.И., Иванов К.С., Медведева Т.Ю., Фадеичева И.Ф. // Геология и геофизика. – 2006. – Т.47. - №6. – С. 755-761. 50. Соболев И.Д. Тектоника / Соболев И.Д. // Геология СССР. М.: Недра, 1969. – Т. 12. – Ч.1. – Кн. 2.

51. Спиридонов Э.М. Низкоградный метаморфизм – рудоподготовительный, рудогенерирующий, рудопреобразующий процесс / Спиридонов Э.М. // Матер. V Российской конф. по проблемам геологии и геодинамики докембрия «Геодинамические обстановки и термодинамические условия регионального метаморфизма в докембрии и фанерозое», Санкт-Петербург, 24–26 октября 2017 г. – СПб: Sprinter, 2017. – С. 166–168.

52. Спиридонов Э.М. В развитие идеи Ф.В. Чухрова 0 позднегидротермальных образованиях: низкоградный метаморфизм как рудоподготовительный, рудообразующий и рудопреобразующий процессы / Э.М. // Проблемы геологии рудных месторождений, Спиридонов минералогии, петрологии и геохимии. М.: ИГЕМ РАН, 2008. - С. 206-209.

53. Спиридонов Э.М., Ладыгин В.М., Степанов В.К. Метавулканиты пренит-пумпеллиитовой И цеолитовой фаций трапповой формации Норильского района Сибирской платформы / Спиридонов Э.М., Ладыгин В.М., Степанов В.К. М.: Изд-во МГУ, 2000. - 212 с.

54. Спиридонов Э.М., Барсукова Н.С., Плетнев П.А. и др. Процессы преобразований первичных хромшпинелидов гипербазитов Нуралинского, Баженовского, Карабашского, Сарановского массивов, мелких тел Березовского и Гумбейского месторождений Урала / Спиридонов Э.М., Барсукова Н.С., Плетнев П.А. // Уральская летняя минералогическая школа-97. Екатеринбург: Изд. УГГГА, 1997. – С. 23-27.

55. Спиридонов Э.М., Барсукова Н.С. Вероятный механизм образования скоплений аваруита (джозефинита) в метаперидотитах / Спиридонов Э.М., Барсукова Н.С. // Уральская летняя минералогическая школа-99. Екатеринбург: Изд. УГГГА, 1999. – С. 208-209.

56. Спиридонов Э.М., Гриценко Ю.Д. Эпигенетический низкоградный метаморфизм и Co-Ni-Sb-As минерализация в Норильском рудном поле / Спиридонов Э.М., Гриценко Ю.Д. М.: Научный мир, 2009. – 146 с.

57. Таловина И.В., Лазаренков В.Г., У. Кемпе, Тихомирова М., Мезенцева О.П., Пилюгин А.Г. Миллерит в рудах Еловского месторождения (Северный Урал) и его генезис в свете изотопных данных // ЗРМО, 2013. – № 1. – С. 87–99.

58. Таловина И.В. Геохимия гипергенных никелевых месторождений Урала. Автореферат дисс. д-ра геолого-минералогических наук. СПБ: Изд-во НМСУ «Горный», 2012. – 38 с.

59. Таловина И.В., Лазаренков В.Г., У. Кемпе, Воронцова Н.И., Мезенцева О.П., Рыжкова С.О., Уголков В.Л. Никелевые серпентины серии лизардит–непуит и кариопилит в гипергенных никелевых месторождениях Урала / Таловина И.В., Лазаренков В.Г., У. Кемпе, Воронцова Н.И., Мезенцева О.П., Рыжкова С.О., Уголков В.Л. // ЗРМО, 2010. - № 4. – С. 80– 94.

60. Ферштатер Г.Б., Беа Ф., Бородина Н.С., Монтеро П. Латеральная зональность, эволюция и геодинамическая интерпретация магматизма Урала в свете новых петрологических и геохимических данных / Ферштатер Г.Б., Беа Ф., Бородина Н.С., Монтеро П. // Петрология. Изд-во СО РАН, 1998. – Т. 6. – №5. – С. 451-477.

61. Эдельштейн И.И. Петрология гипербазитов Тоболо-Иргизского района Южного Урала и особенности связанных с ними кор выветривания / Эдельштейн И.И. М.:Наука, 1968. 200 с.

62. Anovitz L.M., Essene E.J. Phase equilibria in the system CaCO₃–MgCO₃– FeCO₃ / Anovitz L.M., Essene E.J. // J. Petrol., 1987. – Vol. 28. – P. 389–414.

63. Bailey S.W. Chlorites: Structures and crystal chemistry / Bailey S.W. // In: Hydrous Phyllosilicates, 1988. – Vol. 19. – P. 347–403.

64. Bourdelle F., Parra T., Chopin C., Beyssac O. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions / Bourdelle F., Parra T., Chopin C., Beyssac O. // Contrib. Mineral. Petrol., 2013. – Vol. 165. – P. 723–735.

66. Bourdelle F., Cathelineau M. Low-temperature chlorite geothermometry: a graphical representation based on a $T-R^{2+}Si$ diagram / Bourdelle F., Cathelineau M. // Eur. J. Mineral., 2015. – Vol. 27. – P. 617–626.

66. Cathelineau1 M., Myagkiy A., Quesnel B., Boiron M.-C., Gautier P., Boulvais P., Ulrich M., Laurent Truche L. Golfier F., Drouillet M. Multistage crack seal vein and hydrothermal Ni enrichment in serpentinized ultramafic rocks (Koniambo massif, New Caledonia) / Cathelineau1 M., Myagkiy A., Quesnel B., Boiron M.-C., Gautier P., Boulvais P., Ulrich M., Laurent Truche L. Golfier F., Drouillet M. // Miner. Deposita., 2017. – Vol. 52. – P. 945.

67. Cathelineau M. Cation site occupancy in chlorites and illites as a function of temperature / Cathelineau M. // Clay Miner., 1988. – Vol. 23. – P. 471–485.

68. Chinchilla D., Arroyo X., Merinero P., Piña R., Nieto F., Ortega L., Lunar R. Chlorite geothermometry applied to massive and oscillatory-zoned radiated Mnrich chlorites in the Patricia Zn-Pb-Ag epithermal deposit (NE, Chile) / Chinchilla D., Arroyo X., Merinero P., Piña R., Nieto F., Ortega L., Lunar R. // Appl. Clay Sci., 2016. – Vol. 134. – P. 210–220.

69. Cluzel D., Vigier B. Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). Evidence from garnierite veins and faulted regolith / Cluzel D., Vigier B. // Resour. Geol., 2008. – Vol. 58. – P. 161–170.

70. De Caritat P., Hutcheon I., Walshe J.L. Chlorite geothermometry: a review / De Caritat P., Hutcheon I., Walshe J.L. // Clays Clay Miner, 1993. – № 41. – P. 219–239.

71. Ducloux J., Boukili H., Decarreau A., Petit S., Perruchot A., Pradel P. Un gîte hydrothermal de garnierites: l'exemple de Bou Azzer, Maroc / Ducloux J., Boukili H., Decarreau A., Petit S., Perruchot A., Pradel P. // Eur. J. Mineral., 1993. – Vol. 5. – P. 1205–1215.

72. Evans B.W. The serpentinite multisystem revisited: Chrysotile is metastable / Evans B.W. // Int. Geol. Rev., 2004. – Vol. 46. – P. 479–506.

73. Foster M. D. Interpretation of the composition and a classification of the chlorites / Foster M. D. // Geol. Survey Prof. Paper 414-A. Washington, United States Government Printing Office, 1962.

74. Hey M.H. A new review of the chlorites / Hey M.H. // Miner. Mag.,1954. – Vol. 30. – P. 277–292.

75. Hey M.H. A new review of the chlorites / Hey M.H. // Miner. Mag., 1954. – Vol. 30. - P. 277-292.

76. Hillier S., Velde B. Octahedral occupancy and chemical composition of diagenetic (low-temperature) chlorites / Hillier S., Velde B. // Clay Miner., 1991. – Vol. 26. – P. 149–168.

77. Hinsken T., Bröcker M., Strauss H., Bulle F. Geochemical, isotopic and geochronological characterization of listvenite from the Upper Unit on Tinos, Cyclades, Greece / Hinsken T., Bröcker M., Strauss H., Bulle F. // Lithos., 2017. – Vol. 282–283. – P. 281–297.

78. Hoefs J. Stable Isotope Geochemistry / Hoefs J. / Sixth Edition. – Berlin.: Springer, 2009. – 281 p.

79. Inoue A., Meunier A., Patrier-Mas P., Rigault C., Beaufort D., Vieillard P. Application of chemical geothermometry to low-temperature trioctahedral chlorites / Inoue A., Meunier A., Patrier-Mas P., Rigault C., Beaufort D., Vieillard P. // Clays Clay Miner., 2009. – Vol. 57. – P. 371–382.

80. Kempe U., Götze J., Dandar S., Habermann D. Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhur (Mongolian Altai): Indications from a combined CL-SEM study / Kempe U., Götze J., Dandar S., Habermann D. // Mineral. Magazine., 1999. – V. 63 (2). – P. 165-177.

81. Lafuente B., Downs R .T., Yang H., Stone N. The power of databases: the RRUFF project / Lafuente B., Downs R .T., Yang H., Stone N // In: Highlights in Mineralogical Crystallography. Berlin: W. De Gruyter, 2015. – P. 1–30.

82. Lanari P., Wagner T., Vidal O. A thermodynamic model for ditrioctahedral chlorite from experimental and natural data in the system MgO–FeO– Al2O3–SiO2–H2O: applications to P–T sections and geothermometry / Lanari P., Wagner T., Vidal O. // Contrib. Mineral. Petrol, 2014. – Vol. 167. – P. 968.

83. Legros H., Marignac C., Tabary T., Mercadier J., Richard A., Cuney M., Wang R.C., Charles N., Lespinasse M.Y. The ore-forming magmatic-hydrothermal system of the Piaotang W-Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry / Legros H., Marignac C., Tabary T., Mercadier J., Richard A.,

Cuney M., Wang R.C., Charles N., Lespinasse M.Y. // Amer. Miner., 2018. – Vol. 103. – P. 39–54.

84. Lewis J.F., Draper G., Proenza J.A., Espaillat J., Jiménez J. Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean Region: A Review of their occurrence, composition, origin, emplacement and Ni-laterite soils formation / Lewis J.F., Draper G., Proenza J.A., Espaillat J., Jiménez J. // Geol. Acta., 2006. – Vol. 4. – P. 237–263.

85. Maksimovic Z., Bish D.L. Brindleyite, nickel-rich aluminous serpentine mineral analogous to berthierine / Maksimovic Z., Bish D.L. // Amer. Miner., 1978. – Vol. 63. – P. 484–489.

86. Mamadou M.M., Cathelineau M., Bourdelle F., Boiron M.-C., Elmaleh A., Brouand M. Hot fluid flows around a major fault identified by paleothermometric studies (Tim Mersoï Basin, Niger) / Mamadou M.M., Cathelineau M., Bourdelle F., Boiron M.-C., Elmaleh A., Brouand M. // J. Sediment. Res., 2016. – Vol. 86. – P. 914–928.

87. McDonough W.F. Constrains of the composition of continental lithospheric mantle / McDonough W.F. // EPSL, 1990. – V.101 – №1. – P. 1-18.

88. Nikolaeva E.S., Voroncova N.I., Sagdieva R.K. The role of the dikes in the formation of the nickeliferous weathering crust on the example of Sahara and Elov deposits (Urals) / Nikolaeva E.S., Voroncova N.I., Sagdieva R.K. // Freiberg – St.Petersburger interdisziplinares Kolloquium junger Wissenschaftler. Technische Universität Bergakademie Freiberg, 2015.

89. Quesnel B., Boulvais P., Gautier P., Cathelineau M., John C.M., Dierick M., Agrinier P., Drouillet M. Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe / Quesnel B., Boulvais P., Gautier P., Cathelineau M., John C.M., Dierick M., Agrinier P., Drouillet M. // Geochim. Cosmochim. Acta., 2016. – Vol. 183. – P. 234–249.

90. Ryan P.C., Reynolds R.C. The chemical composition of serpentine/chlorite in the Tuscaloosa Formation, United States Gulf Coast; EDX vs. XRD determinations, implications for mineralogic reactions and the origin of anatase / Ryan P.C., Reynolds R.C. // Clays and Clay Minerals.,1997. – Vol. 45. – P. 339– 352.

91. Shau Y.H., Peacor D.R., Essene E.J. Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies / Shau Y.H., Peacor D.R., Essene E.J. // Contrib. Miner. Petrol., 1990. – Vol. 105. – P. 123–142.

92. Taylor S.R., McLennan S.M. The continental crust, its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks / Taylor S.R., McLennan S.M. Blackwell, Oxford, 1985. – 312 c.

93. Trincal V., Lanari P. Al-free di-trioctahedral substitution in chlorite and a ferri-sudoite end-member / Trincal V., Lanari P. // Clay Miner., 2016. – Vol. 51. – P. 675–689.

94. Vidal O., Parra T., Vieillard P. Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of

oxidation / Vidal O., Parra T., Vieillard P. // Amer. Miner., 2005. – Vol. 90. – P. 347–358.

95. Vidal O., de Andrade V., Lewin E., Muñoz M., Parra T., Pascarelli S. P–T– deformation–Fe^{3+/}Fe²⁺ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan) / Vidal O., de Andrade V., Lewin E., Muñoz M., Parra T., Pascarelli S. // J. Metamorph. Geol., 2006. – Vol. 24. – P. 669–683.

96. Vidal O., Parra T., Trotet F. A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100° to 600 °C, 1 to 25 kb range / Vidal O., Parra T., Trotet F. // Amer. J. Sci., 2001. – Vol. 301. – P.557–592.

97. Walshe J. L. A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems / Walshe J. L. // Econ. Geol., 1986. – Vol. 81. – P. 681–703.

98. Wang A., Freeman J.J., Jolliff B.L. Understanding the Raman spectral features of phyllosilicates / Wang A., Freeman J.J., Jolliff B.L. // J. Raman Spectrosc, 2014. – Vol. 46. – P. 829–845.

99. Wenner D.B., Taylor H.P. Temperatures of serpentinization of ultramafic rocks based on ¹⁸O/¹⁶O fractionation between coexisting serpentine and magnetite / Wenner D.B., Taylor H.P. // Contrib. Mineral. Petrol., 1971. – Vol. 32. – P. 166–185.

100. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals / Whitney D.L., Evans B.W. // Amer. Miner., 2010. – Vol. 95. – P. 185–187.

101. Wiewióra A., Weiss Z. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group / Wiewióra A., Weiss Z. // Clay Miner., 1990. – Vol. 25. – P. 83–92.

102. Yavuz F., Kumral M., N. Karakaya N., Karakaya M., Yıldırıma D. A Windows program for chlorite calculation and classification / Yavuz F., Kumral M., N. Karakaya N., Karakaya M., Yıldırıma D. // Comput. Geosci., 2015. – Vol. 81. – P. 101–113.

103. Zane A., Sassi R., Guidotti C.V. New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks / Zane A., Sassi R., Guidotti C.V. // Canad. Miner., 1998. – Vol. 36. – P. 713–726.

104. Zane A., Weiss Z. A procedure for classifying rock-forming chlorites based on microprobe data / Zane A., Weiss Z. // Rend. Fis. Acc. Lincei, 1998. – S. 9. – Vol. 9. – P. 51–56.

105. Zane A., Weiss Z. A procedure for classifying rock-forming chlorites based on microprobe data / Zane A., Weiss Z. // Rend. Fis. Acc. Lincei, 1998. – S. 9. – Vol. 9. – P. 51–56.

ФОНДОВЫЕ МАТЕРИАЛЫ

106. Кононова Л.И., Бородина К.Г., Малеев В.П., Суздалов Б.М. и др. Отчет о результатах геологоразведочных работ и подсчет запасов в пределах

Серовского месторождения силикатных никелевых руд на Северном Урале по состоянию на 1 января 1973 г. / Кононова Л.И., Бородина К.Г., Малеев В.П., Суздалов Б.М. и др. – ВГФ, УГФ, Воронцовская ГРП, 1973. – Т.1-11.

107. Петров Г.А., Жиганов А.А., Стефановский В.В., Шалагинов В.В., Петрова Т.А., Овчинников Р.А., Гертман Т.А. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000 000 (тертье поколение). Серия Уральская. Лист О-41 – Екатеринбург. Объяснительная записка. – СПб: Картфабрика ВСЕГЕИ, 2011. – 492 с.

Геологический разрез коры выветривания объекта № 3

Геологический разрез коры выветривания объекта № 6

Условные обозначения:

1	$\bigotimes 6$	Q Q 11	Sr 16
<u> </u>	$\vee \vee$ 7	$(A_1)(M_2)$ 12	Mt 17
$\overline{\circ} - 3$	(\mathbb{R}_2)	13	Si 18
1//// 4	$\odot_1 \odot_2 9$	14	Fe 19
··· ₉ , 5		a 15	Ct 20

1-6 – мезокайнозойские отложения; 7 – охры и обохренные серпентиниты; 8 – выщелоченные породы, развитые по гранодиоритам и кварцевым диоритам (a – плотные, δ – рыхлые); 9 - керолитизированные серпентиниты (1 – плотные, 2 – рыхлые); 10 – гидрохлоритовые породы по диоритам (1 – плотные, 2 – рыхлые); 11 – гидрохлоритовые породы по диабазам (1 – плотные, 2 – рыхлые); 12 – гидрохлоритмонтмориллонитовые породы (1 – по амфиболитам, 2 – по спессартитам); 13 - дезинтегрированные серпентиниты; 14 – дезинтегрированные гранодиориты; 15 - дайки диоритов и других пород; 16-25 – эпипородные изменения: сидеритизация (16), магнетитизация (17), силицификация (18), обохривание (19), керолитизация (20), каолинизация (21), нонтронитизация (22), монтмориллонитизация (23), лептохлоритизация (24), карбонатизация (25).

запа

Геологический разрез коры выветривания объекта № 7

K	21
Nn	22
Mm	23
lc	24
Са	25

ПРИЛОЖЕНИЕ 2.

Таблица 1 – Средний химический состав пород профилей выветривания гипербазитов Серовско-Маукского офиолитового пояса (по данным рентгенофлуоресцентного анализа)

N⁰			Объе	кт №2				
п/п	Литологические разновидности пород	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MgO	NiO	CoO
1	Шамозитизированные охры и обохренные серпентиниты	12,75	4,76	52,96	9,50	3,42	1,050	0,100
2	Сидерит-магнетит- шамозитовые породы	11,27	9,37	28,7	28,60	3,10	0,960	0,140
3	Шамозитизированные рыхлые выщелоченные керолитизированные нонтронитизированные серпентиниты	37,69	5,65	15,39	7,18	21,31	0,800	0,044
4	Плотные и рыхлые слабо выщелоченные керолитизированные затронутые нонтронитизацией серпентиниты	42,05	1,65	9,85	2,58	26,44	1,300	0,023
			Объект.	№3				
1	Охры и сильно обохренные серпентиниты и шамозитизированные разности	13,30	5,03	50,5	11,35	2,28	0,910	0,092
2	Шамозитизированные нонтронитизированные обохренные серпентиниты	24,30	5,81	25,7	16,80	8,44	1,050	0,086
3	Шамозитовые и магнетит- сидерит-шамозитовые породы	18,86	12,06	27,57	28,07	3,02	0,870	0,240
4	Шамозитизированные рыхлые выщелоченные керолитизированные, нонтронитизированные серпентиниты	42,77	3,23	14,49	6,44	19,93	0,980	0,047
5	Плотные слабо выщелоченные керолитизированные слабо нонтронитизированные серпентиниты	40,20	1,31	8,87	2,98	26,40	0,780	0,018
6	Рыхлые слабо выцелоченные керолитизированные слабо нонтронитизированные серпентиниты	36,90	1,77	20,5	3,63	21,07	1,020	0,046

Таблица 1 – Средний химический состав пород профилей выветривания гипербазитов Серовско-Маукского офиолитового пояса (по данным рентгенофлуоресцентного анализа)

N⁰			Объе	кт №4				
п/п	Литологические разновидности пород	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MgO	NiO	CoO
1	Охры и сильно обохренные выщелоченные серпентиниты	8,72	3,62	69,35	2,11	2,23	1,070	0,126
2	Шамозитизированные охры и сильно обохренные выщелоченные серпентиниты	11,08	3,53	55,45	13,42	2,19	1,090	0,104
3	Шамозитизированные нонтронитизированные обохренные серпентиниты	18,76	4,61	37,60	17,80	5,68	1,000	0,085
4	Сидерит-магнетит- шамозитовые породы	9,26	5,51	21,51	30,45	3,74	0,750	0,104
5	Рыхлые выщелоченные керолитизированные нонтронитизированные и шамозитизированные серпентиниты	34,99	7,75	13,40	7,82	19,37	0,770	0,036
6	Рыхлые слабо выщелоченные серпентиниты	37,38	1,83	10,08	1,37	25,09	2,200	0,038
			Объект	№6	1	1	1	I
1	 Охры и сильно обохренные выщелоченные серпентиниты 	7,70	3,40	70,10	3,94	3,03	0,80	0,081
2	2.Охры по окремненным серпентинитам	34,53	2,59	38,95	4,96	5,03	0,93	0,049
3	3.Нонтронитизированные обохренные серпентиниты	32,76	2,58	31,68	4,96	12,99	1,05	0,049
4	4.Рыхлые слабо выщелоченные серпентиниты	37,40	1,88	10,00	1,37	25,00	2,20	0,038

Таблица 1 – Средний химический состав пород профилей выветривания гипербазитов Серовско-Маукского офиолитового пояса (по данным рентгенофлуоресцентного анализа)

No			Объе	кт №7				
п/п	Литологические разновидности пород	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MgO	NiO	CoO
1	Охры и сильно обохренные серпентиниты	19,65	5,35	46,00	4,72	4,38	1,200	0,071
2	Охры шамозитизированные охры и сильно обохренные серпентиниты	14,38	3,95	53,55	9,48	1,54	1,180	0,073
3	Шамозитизированные нонтронитизированные обохренные серпентиниты	25,60	6,12	20,05	22,29	4,59	1,120	0,078
4	Шамозитовые и сидерит- магнетит-шамозитовые породы	21,89	17,95	13,68	30,37	1,74	0,700	0,066
5	Нонтронитизированные, обохренные серпентиниты	33,42	2,32	32,46	4,62	10,00	1,590	0,030
6	Рыхлые выщелоченные керолитизированные нонтронит.,слабо обохренные серпентиниты	41,50	1,74	9,69	3,40	25,15	1,360	0,036
7	Плотные слабо выщелоченные керолитизир.,затронутые нонтронитизацией серпентиниты	19,65	5,35	46,00	4,72	4,38	1,200	0,071
			Объект	Nº8				
1	Шамозитизированные и сильно обохренные выщелоченные серпентиниты	10,75	6,02	48,50	14,45	3,85	1,08	0,125
2	Шамозитизированные выщелоченные нонтронитизированные обохренные серпентиниты	22,20	4,95	32,15	15,90	8,33	1,43	0,122
3	Шамозитовые и магнетит- сидерит-шамозитовые породы	5,96	6,39	45,70	23,60	3,31	1,38	0,164
4	Рыхлые слабо выщелоченные керолитизированные,затро нутые нонтронитизацией серпентиниты	38,20	1,00	12,20	3,13	31,90	0,55	0,084
7 7 1 2 3 4	нонтронит.,слабо обохренные серпентиниты Плотные слабо выщелоченные керолитизир.,затронутые нонтронитизацией серпентиниты Шамозитизированные выщелоченные серпентиниты Шамозитизированные выщелоченные нонтронитизированные обохренные серпентиниты Шамозитовые и магнетит- сидерит-шамозитовые породы Рыхлые слабо выщелоченные керолитизированные,затро нутые нонтронитизацией серпентиниты	19,65 10,75 22,20 5,96 38,20	1,74 5,35 Объект 6,02 4,95 6,39 1,00	46,00 №8 48,50 32,15 45,70 12,20	4,72 14,45 15,90 23,60 3,13	4,38 3,85 8,33 3,31 31,90	1,200 1,200 1,03 1,43 1,38 0,55	3

ПРИЛОЖЕНИЕ 3.

Таблица 2 – Химический состав хлоритов из коры выветривания Кольского гипербазитового массива, Северный Урал

Образец	6-9-95							-			
Анализы	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	39.20	37.18	36.89	38.15	39.21	40.30	40.43	40.02	40.14	39.35	40.11
TiO ₂	0.27	0.00	0.00	0.00	0.22	0.39	0.16	0.39	0.00	1.04	1.10
Al ₂ O ₃	14.18	19.88	20.77	19.23	16.53	17.33	16.06	15.73	13.75	14.23	15.56
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	6.48	4.68	4.50	4.67	3.94	3.84	4.01	4.16	7.41	4.94	3.83
MnO	0.22	0.00	0.00	0.00	0.00	0.00	0.18	0.00	0.37	0.20	0.40
MgO	18.71	36.95	37.27	37.52	26.34	27.72	26.47	27.13	17.26	24.31	26.79
CaO	0.33	0.00	0.00	0.00	0.29	0.25	0.17	0.38	0.00	0.28	0.16
Na ₂ O	0.35	0.00	0.00	0.00	0.96	0.40	0.78	0.65	0.36	0.61	0.68
K ₂ O	0.16	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.45	0.00	0.00
NiO	19.99	1.31	0.56	0.43	12.28	9.77	11.75	11.56	19.97	15.03	11.24
CoO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.89	100.00	99.99	100.00	99.91	100.00	100.01	100.02	99.71	99.99	99.87
							•			•	
Si apfu ¹	3.558	3.070	3.033	3.133	3.394	3.422	3.476	3.444	3.660	3.444	3.451
Al ^{IV}	0.442	0.930	0.967	0.867	0.606	0.578	0.524	0.556	0.340	0.534	0.549
Tet. total	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Al ^{VI}	1.075	1.004	1.046	0.994	1.080	1.156	1.103	1.039	1.138	0.943	1.028
Ti	0.018	0.000	0.000	0.000	0.014	0.025	0.010	0.025	0.000	0.069	0.071
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.492	0.323	0.309	0.321	0.285	0.273	0.288	0.299	0.565	0.364	0.276
Mn	0.017	0.000	0.000	0.000	0.000	0.000	0.013	0.000	0.029	0.015	0.029
Mg	2.532	4.548	4.568	4.593	3.399	3.509	3.392	3.480	2.346	3.192	3.436
Ca	0.032	0.000	0.000	0.000	0.027	0.023	0.016	0.035	0.000	0.026	0.015
Na	0.062	0.000	0.000	0.000	0.161	0.066	0.130	0.108	0.064	0.104	0.113
К	0.019	0.000	0.000	0.000	0.015	0.000	0.000	0.000	0.052	0.000	0.000
Ni	1.459	0.087	0.037	0.028	0.855	0.667	0.813	0.800	1.465	1.065	0.778
Co	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct. total	5.593	5.963	5.961	5.937	5.633	5.630	5.620	5.644	5.543	5648	5.618
Oct. R^{3+}	1.075	1.004	1.046	0.994	1.080	1.156	1.103	1.039	1.138	0.943	1.028
Oct. vac. ²	0.316	0.037	0.039	0.063	0.237	0.289	0.289	0.241	0.399	0.205	0.239
Mg# ³	0.837	0.934	0.937	0.935	0.923	0.928	0.922	0.921	0.806	0.898	0.926
$a_{Mg-Ame} \cdot 10^3$	0.046	30.147	37.359	23.019	0.974	0.994	0.515	0.741	0.010	0.357	0.638
$a_{Mg-Afcl} \cdot 10^3$	3.173	42.867	39.517	52.222	15.966	19.906	17.757	19.784	2.175	12.110	18.538
$a_{Mg-Sud} \cdot 10^3$	5.364	0.153	0.196	0.704	9.265	17.347	12.981	8.846	5.388	3.798	8.052
$T_{C88, 0}C^4$	80	238	249	217	133	124	107	117	47	110	115
$T_{\rm B13}, {}^{\rm o}{\rm C}^5$	74	348	347	262	110	97	91	104	52	110	103
					-					-	
1	1	1	1	1	1	1	1		1	1	1

(по данным микрорентгеноспектрального анализа)

Примечание.

¹ Формулы рассчитаны на 14 атомов кислорода. Полное железо взято как Fe²⁺.

² Октаэдрическая вакансия = $(Al^{VI} - Al^{IV})/2$.

³ Мg# обозначен как атомное отношение Mg/(Mg+Fe).

 4 Температуры рассчитаны с помощью хлоритового геотермометра Cathelineau (1988) из содержания Al^{IV} (*apfu*) в хлоритах.

⁵ Температуры рассчитаны с помощью хлоритового геотермометра Bourdelle et al. (2013) на основе идеальных активностей Mg–амезита, Mg–безалюминиевого хлорита и Mg–судоита – крайних членов шести компонентного хлоритового твердого раствора.

Таблица 2 – Химический состав хлоритов из коры выветривания Кольского гипербазитового массива, Северный Урал

Sample	6-9-95							-			
Analysis	12	13	14	15	16	17	18	19	20	21	22
SiO ₂	37.15	37.28	37.53	40.13	39.57	38.29	40.58	41.27	38.87	39.97	39.87
TiO ₂	0.00	0.00	0.00	0.00	0.24	0.41	0.99	0.21	0.90	0.34	0.54
Al ₂ O ₃	19.39	20.37	18.73	16.45	16.29	16.00	14.82	14.26	15.44	14.18	15.76
Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.78	0.00	0.00	0.00	0.00
FeO	4.85	4.41	4.54	3.61	4.32	5.30	4.29	3.52	5.09	4.03	4.06
MnO	0.03	0.11	0.00	0.21	0.04	0.18	0.39	0.21	0.33	0.36	0.38
MgO	36.86	36.66	35.32	27.18	26.91	23.28	26.73	28.58	25.24	28.17	26.84
CaO	0.00	0.00	0.00	0.00	0.12	0.00	0.24	0.00	0.21	0.28	0.27
Na ₂ O	0.00	0.00	0.00	0.81	0.90	0.00	0.66	0.77	0.32	0.63	0.97
K ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15
NiO	1.72	1.17	3.88	11.51	11.48	16.42	10.44	11.18	13.60	12.03	11.07
CoO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.00	100.00	100.00	99.90	99.87	99.88	99.92	100.00	100.00	99.99	99.91
Si apfu ¹	3.078	3071	3.132	3.445	3.413	3.393	3489	3.533	3.401	3.459	3.438
Alıv	0.922	0.929	0.868	0.555	0.587	0.607	0511	0.467	0.599	0.541	0.562
Tet. total	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Al ^{VI}	0.971	1.049	0.975	1.109	1.069	1.064	0.991	0.972	0.992	0.905	1.039
Ti	0.000	0.000	0.000	0.000	0.016	0.027	0.064	0.014	0.059	0.022	0.035
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.053	0.000	0.000	0.000	0.000
Fe	0.336	0.304	0.317	0.259	0.312	0.393	0.308	0.252	0.372	0.292	0.293
Mn	0.002	0.008	0.000	0.015	0.003	0.014	0.028	0.015	0.024	0.026	0.028
Mg	4.552	4.502	4.395	3.478	3.460	3.076	3.426	3.647	3.292	3.634	3.450
Са	0.000	0.000	0.000	0.000	0.011	0.000	0.022	0.000	0.020	0.028	0.025
Na	0.000	0.000	0.000	0.135	0.151	0.000	0.110	0.128	0.054	0.106	0.162
К	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.016
Ni	0.115	0.078	0.260	0.795	0.797	1.171	0.722	0.770	0.957	0.837	0.768
Со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct. total	5.976	5940	5.947	5.656	5.657	5.744	5.593	5.670	5.697	5.717	5.612
Oct. <i>R</i> ³⁺	0.971	1.049	0.975	1.109	1.069	1.064	1.044	0.972	0.992	0.905	1.039
Oct. vac. ²	0.024	0.060	0.053	0.277	0.241	0.229	0.240	0.252	0.197	0.182	0.238
Mg# ³	0.931	0.937	0.933	0.931	0.917	0.887	0.917	0.935	0.898	0.926	0.921
$a_{ m Mg-Ame} \cdot 10^3$	28.743	29.030	18.242	0.759	0.936	0.577	0.450	0.418	0.752	0.757	0.738
$a_{\mathrm{Mg-Afcl}} \cdot 10^{3}$	44.380	40.137	41.771	19.675	18.250	8.801	19.209	29.648	13.368	26.252	18.628
$a_{Mg-Sud} \cdot 10^3$	0.042	0.630	0.374	13.490	9.733	6.405	6.967	8.071	4.664	3.875	8.462
<i>Т</i> с88, °С4	235	237	217	117	127	133	103	88	131	112	119
<i>Т</i> в13, °С ⁵	422	280	281	96	107	111	99	92	120	120	105
	•			•				•	•		

Таблица 2 – Химический состав хлоритов из коры выветривания Кольского гипербазитового массива, Северный Урал

Sample	6-9-95										
Analysis	23	24	25	26	27	28	29	30	31	32	33
SiO ₂	40.67	36.76	36.62	41.00	40.93	37.24	37.63	38.42	35.67	40.98	40.86
TiO ₂	0.35	0.00	0.11	0.34	0.36	0.00	0.00	0.71	0.52	0.61	0.26
Al ₂ O ₃	15.97	19.96	20.45	14.83	14.44	19.44	19.33	13.38	11.29	14.13	11.83
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	4.03	4.84	4.22	4.67	3.88	5.25	5.19	6.96	16.11	4.91	7.62
MnO	0.33	0.00	0.11	0.23	0.31	0.11	0.15	0.26	0.13	0.00	0.09
MgO	26.19	36.86	36.96	30.89	29.82	37.16	36.72	21.02	17.15	28.70	16.99
CaO	0.48	0.00	0.00	0.00	0.15	0.00	0.00	0.38	0.30	0.00	0.47
Na ₂ O	0.32	0.00	0.12	0.35	0.42	0.00	0.00	0.27	0.00	0.66	0.00
K ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.19	0.38	0.00	0.44
NiO	11.65	1.58	1.41	7.70	9.69	0.73	0.98	18.25	18.30	9.87	21.08
CoO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.99	100.00	100.00	100.01	100.00	99.93	100.00	99.84	99.85	99.86	99.64
Si apfu ¹	3.493	3.044	3.024	3.470	3.489	3.079	3109	3.483	3.408	3.513	3.750
Alıv	0.507	0.958	0.976	0.530	0.511	0.921	0.891	0.517	0.592	0.487	0.250
Tet. total	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Al ^{VI}	1.110	0.992	1.014	0.949	0.939	0.974	0.992	0.913	0.680	0.940	1.030
Ti	0.023	0.000	0.007	0.022	0.023	0.000	0.000	0.048	0.037	0.039	0.018
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.289	0.335	0.291	0.331	0.277	0.363	0.359	0.528	1.287	0.352	0.585
Mn	0.024	0.000	0.008	0.016	0.022	0.008	0.010	0.020	0.011	0.000	0.007
Mg	3.354	4.550	4.550	3.898	3.789	4.581	4.523	2.841	2.443	3.667	2.325
Са	0.044	0.000	0.000	0.000	0.014	0.000	0.000	0.037	0.031	0.000	0.046
Na	0.053	0.000	0.019	0.057	0.069	0.000	0.000	0.047	0.000	0.110	0.000
К	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.022	0.046	0.000	0.052
Ni	0.805	0.105	0.094	0.524	0.664	0.049	0.065	1.331	1.407	0.681	1.556
Со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct. total	5.605	5.982	5.964	5.740	5.715	5.974	5.949	5.682	5.865	5.679	5.520
Oct. <i>R</i> ³⁺	1.110	0.992	1.014	0.949	0.939	0.974	0.992	0.913	0.680	0.940	1.030
Oct. vac. ²	0.302	0.018	0.019	0.210	0.214	0.026	0.051	0.198	0.044	0.226	0.390
Mg# ³	0.921	0.931	0.940	0.922	0.932	0.927	0.927	0.843	0.655	0.912	0.799
$a_{ m Mg-Ame} \cdot 10^3$	0.417	30.147	37.430	1.078	0.764	29.643	24.185	0.166	0.172	0.533	0.002
$a_{\text{Mg-Afcl}} \cdot 10^3$	16.992	42.867	38.602	39.893	34.948	45.704	45.526	6.019	2.228	29.760	2.073
$a_{ m Mg-Sud} \cdot 10^3$	13.406	0.153	0.023	7.128	6.443	0.055	0.358	2.384	0.025	6.482	2.481
<i>Т</i> с88, °С4	101	246	252	109	103	235	225	104	129	95	19
<i>Т</i> в13, °С ⁵	86	502	489	111	107	405	294	108	242	101	42

Таблица 2 – Химический состав хлоритов из коры выветривания Кольского гипербазитового массива, Северный Урал

Sample	6-9-95		6-9-65				-			-	-
Analysis	34	35	36	37	38	39	40	41	42	43	44
SiO ₂	39.38	39.27	39.44	39.85	40.25	39.16	40.09	39.04	40.26	38.85	40.13
TiO ₂	0.63	0.62	1.24	1.29	1.05	1.15	0.85	0.93	0.99	0.77	1.03
Al ₂ O ₃	13.14	14.20	16.43	16.42	14.86	16.80	16.06	16.81	16.96	18.13	16.12
Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	6.54	4.78	7.90	7.66	8.20	7.87	7.88	8.01	7.99	7.42	7.53
MnO	0.15	0.37	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	20.21	25.35	27.95	26.37	26.20	26.05	25.03	26.18	25.39	24.18	24.49
CaO	0.46	0.41	0.00	0.18	0.00	0.00	0.15	0.02	0.25	0.14	0.40
Na ₂ O	0.00	0.62	0.36	0.37	0.40	0.56	0.37	0.00	0.00	0.32	0.00
K ₂ O	0.32	0.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NiO	18.99	13.96	6.57	7.84	9.05	8.42	9.58	8.98	8.16	10.20	10.30
CoO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.82	99.87	99.99	99.98	100.01	100.01	100.01	100.00	100.00	100.01	100.00
Si apfu ¹	3.565	3.455	3.371	3.418	3.480	3.374	3.465	3.370	3.450	3.361	3.472
Alıv	0.435	0.545	0.629	0.582	0.520	0.626	0.535	0.630	0.550	0.639	0.528
Tet. total	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Al ^{VI}	0.967	0.927	1.026	1.077	0.994	1.080	1.101	1.081	1.163	1.210	1.115
Ti	0.043	0.041	0.080	0.083	0.068	0.075	0.055	0.060	0.064	0.050	0.067
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.495	0.352	0.565	0.549	0.593	0.567	0.570	0.578	0.573	0.537	0.545
Mn	0.012	0.028	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	2.728	3.325	3.562	3.371	3.377	3.346	3.225	3.369	3.244	3118	3.158
Са	0.045	0.039	0.000	0.017	0.000	0.000	0.014	0.002	0.023	0.013	0.037
Na	0.000	0.106	0.060	0.062	0.067	0.094	0.062	0.000	0.000	0.054	0.000
К	0.037	0.033	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ni	1.383	0.988	0.452	0.541	0.629	0.584	0.666	0.624	0.563	0.710	0.717
Со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct. total	5.628	5.660	5.692	5.622	5.661	5.652	5.617	5.712	5.606	5.625	5.602
Oct. <i>R</i> ³⁺	0.967	0.927	1.026	1.077	0.994	1.080	1.101	1.081	1.163	1.210	1.115
Oct. vac. ²	0.266	0.191	0.199	0.247	0.237	0.227	0.283	0.225	0.307	0.285	0.294
Mg# ³	0.846	0.904	0.863	0.860	0.851	0.855	0.850	0.854	0.850	0.853	0.853
$a_{ m Mg-Ame} \cdot 10^3$	0.061	0.489	1.612	0.879	0.517	1.172	0.486	1.257	0.594	0.955	0.409
$a_{ m Mg-Afcl} \cdot 10^3$	5.083	15.296	19.868	15.544	17.299	13.881	12.855	14.333	12.925	8.934	11.485
$a_{ m Mg-Sud} \cdot 10^3$	3.704	3.586	6.928	10.182	7.159	8.824	11.709	8.911	16.342	15.620	12.042
<i>Т</i> с88, °С4	78	114	141	126	106	140	110	141	115	144	108
<i>Т</i> в13, °С ⁵	82	116	125	106	102	116	93	117	91	103	90

Таблица 2 – Химический состав хлоритов из коры выветривания Кольского гипербазитового массива, Северный Урал

(по данным микрорентгеноспектрального анализа)

Sample	6-9-65									6-9-97	
Analysis	45	46	47	48	49	50	51	52	53	54	55
SiO ₂	39.60	41.15	41.82	40.71	39.76	40.12	38.16	39.78	40.70	38.60	39.33
TiO ₂	1.08	0.87	0.46	0.49	0.23	0.49	1.14	0.66	1.04	0.00	0.26
Al ₂ O ₃	16.28	18.16	14.84	15.24	15.95	16.36	17.27	17.22	14.98	18.20	17.15
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	8.41	7.49	7.76	7.58	7.54	7.89	8.59	7.78	7.47	4.68	4.13
MnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
MgO	25.47	24.53	26.27	27.92	28.24	27.65	24.44	23.30	25.98	24.45	24.58
CaO	0.21	0.36	0.00	0.00	0.28	0.00	0.22	0.35	0.21	0.05	0.00
Na ₂ O	0.30	0.25	0.26	0.42	0.59	0.65	0.36	0.23	0.43	0.51	0.56
K ₂ O	0.08	0.21	0.00	0.00	0.00	0.00	0.23	0.00	0.00	0.00	0.00
NiO	8.41	6.82	8.49	7.65	7.29	6.74	9.51	10.57	9.20	13.35	13.97
CoO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.01	99.99	99.99	100.01	99.99	100.01	99.99	100.00	100.01	99.99	99.99
			-	-	-	-					
Si apfu ¹	3.423	3496	3.585	3.483	3.411	3.430	3.327	3.452	3.507	3.356	3.415
Alw	0.577	0.504	0.415	0.517	0.589	0.570	0.673	0.548	0.493	0.644	0.585
Tet. total	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Al ^{VI}	1.082	1.314	1.085	1.020	1.023	1.078	1.102	1.213	1.029	1.221	1.169
Ti	0.070	0.056	0.030	0.032	0.015	0.032	0.075	0.043	0.067	0.000	0.017
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.608	0.532	0.556	0.542	0.541	0.564	0.626	0.565	0.538	0.340	0.300
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Mg	3.283	3.107	3.357	3.561	3.611	3.524	3.177	3.014	3.337	3.169	3.181
Са	0.019	0.033	0.000	0.000	0.026	0.000	0.021	0.033	0.019	0.005	0.000
Na	0.050	0.041	0.043	0.070	0.098	0.108	0.061	0.039	0.072	0.086	0.094
К	0.009	0.023	0.000	0.000	0.000	0.000	0.026	0.000	0.000	0.000	0.000
Ni	0.585	0.466	0.585	0.527	0.503	0.463	0.667	0.738	0.638	0.934	0.976
Со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct. total	5.628	5.475	5.614	5.682	5.693	5.661	5.647	5.573	5.609	5.664	5.644
Oct. R ³⁺	1.082	1.314	1.085	1.020	1.023	1.078	1.102	1.213	1.029	1.221	1.169
Oct. vac. ²	0.253	0.405	0.335	0.252	0.217	0.254	0.215	0.332	0.268	0.288	0.292
Mg# ³	0.844	0.854	0.858	0.868	0.870	0.862	0.835	0.842	0.861	0.903	0.914
$a_{\mathrm{Mg-Ame}} \cdot 10^3$	0.748	0.353	0.197	0.672	1.292	1.025	1.276	0.406	0.383	0.993	0.619
$a_{\text{Mg-Afcl}} \cdot 10^3$	13.384	10.611	19.238	23.683	22.958	20.353	9.476	8.420	16.778	9.862	11.097
$a_{ m Mg-Sud}\cdot 10^3$	10.070	29.879	13.379	9.808	8.282	11.958	7.494	17.187	9.064	16.408	14.016
<i>Т</i> с88, °С4	124	100	72	104	128	122	155	115	97	145	127
<i>Т</i> в13, °С ⁵	104	72	73	99	116	104	124	86	92	102	95

172

Таблица 2 – Химический состав хлоритов из коры выветривания Кольского гипербазитового массива, Северный Урал

Sample	6-9-97	-		_		-		-			
Analysis	56	57	58	59	60	61	62	63	64	65	66
SiO ₂	39.26	38.63	40.10	37.60	37.32	39.22	39.28	37.93	38.59	39.59	37.64
TiO ₂	0.35	0.32	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.13	0.00
Al ₂ O ₃	17.05	17.97	15.00	19.80	19.57	17.22	17.78	18.36	18.55	17.90	18.24
Cr_2O_3	0.00	0.00	0.00	0.84	0.50	0.00	0.00	0.00	0.00	0.00	1.58
FeO	5.69	4.73	10.96	3.50	3.38	4.25	4.41	4.54	4.35	4.33	3.89
MnO	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	25.12	25.47	23.15	37.88	38.75	24.96	26.07	24.36	24.75	24.30	37.99
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na ₂ O	0.46	0.38	0.00	0.00	0.00	0.00	0.00	0.71	0.00	0.46	0.00
K ₂ O	0.26	0.00	0.00	0.00	0.00	0.23	0.00	0.00	0.00	0.00	0.00
NiO	11.81	12.50	10.29	0.39	0.47	13.98	12.46	13.73	13.77	13.30	0.65
CoO	0.00	0.00	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.00	100.00	100.01	100.01	99.99	100.00	100.00	99.98	100.01	100.01	99.99
Si apfu ¹	3.403	3.341	3.537	3.080	3.059	3410	3.383	3.309	3.344	3.421	3.103
Aliv	0.597	0.659	0.463	0.920	0.941	0.590	0.617	0.691	0.656	0.579	0.897
Tet. total	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Alvi	1.145	1.173	1.096	0.991	0.949	1.174	1.187	1.197	1.238	1.244	0.876
Ti	0.023	0.021	0.000	0.000	0.000	0.000	0.000	0.013	0.000	0.008	0.000
Cr	0.000	0.000	0.000	0.054	0.032	0.000	0.000	0.000	0.000	0.000	0.103
Fe	0.412	0.342	0.808	0.240	0.232	0.309	0.318	0.331	0.315	0.313	0.268
Mn	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	3.246	3.284	3.044	4.626	4.735	3.235	3.347	3.168	3.197	3.130	4.669
Са	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.077	0.064	0.000	0.000	0.000	0.000	0.000	0.120	0.000	0.077	0.000
К	0.029	0.000	0.000	0.000	0.000	0.028	0.000	0.000	0.000	0.000	0.000
Ni	0.824	0.870	0.730	0.026	0.031	0.978	0.863	0.964	0.960	0.925	0.043
Со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct. total	5.650	5.690	5.684	5.937	5.980	5.695	5.715	5.674	5.709	5.620	5.959
Oct. <i>R</i> ³⁺	1.145	1.173	1.096	1.045	0.981	1.174	1.187	1.197	1.238	1.244	0.979
Oct. vac. ²	0.274	0.257	0.316	0.036	0.004	0.292	0.285	0.253	0.291	0.333	- 0.011
Mg# ³	0.887	0.906	0.790	0.951	0.953	0.913	0.913	0.905	0.910	0.909	0.946
$a_{\text{Mg-Ame}} \cdot 10^3$	0.786	1.292	0.210	30.471	37.035	0.713	1.071	1.331	1.138	0.576	26.991
$a_{Mg-Afcl} \cdot 10^3$	12.240	11.898	10.027	48.888	53.553	12.146	14.172	9.164	10.161	10.142	56.360
$a_{Mg-Sud} \cdot 10^3$	12.965	13.128	11.292	0.138	0.000	14.965	16.760	12.412	17.800	20.079	-0.003
<i>Т</i> С88, °С4	130	150	87	234	241	128	137	160	149	124	227
<i>Т</i> в13, °С ⁵	101	111	80	351	1149	96	101	114	103	88	-
				1							

Таблица 2 – Химический состав хлоритов из коры выветривания Кольского гипербазитового массива, Северный Урал

Sample	6-9-97	•			•				-		
Analysis	67	68	69	70	71	72	73	74	75	76	77
SiO ₂	38.20	38.36	38.24	39.00	39.74	40.58	38.37	38.53	37.25	36.39	36.97
TiO ₂	0.33	0.00	0.00	0.24	0.02	0.09	0.32	0.00	0.00	0.00	0.00
Al ₂ O ₃	17.70	17.86	18.05	17.86	17.58	18.16	18.83	18.22	20.01	22.00	19.31
Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.35	0.33	0.54	0.88
FeO	4.10	5.15	4.68	4.37	4.11	4.57	4.87	3.67	2.83	3.40	3.24
MnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	25.24	24.28	24.92	24.37	25.35	24.25	24.12	38.55	38.33	36.97	39.21
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K ₂ O	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.00	0.00	0.00
NiO	14.27	14.34	14.11	14.17	13.19	12.34	13.50	0.50	1.26	0.71	0.39
CoO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.00	99.99	100.00	100.01	99.99	99.99	100.01	99.99	100.01	100.01	100.00
Si apfu ¹	3.325	3.350	3.329	3.385	3.425	3.479	3.328	3.159	3.053	2.982	3.034
Alıv	0.675	0.650	0.671	0.615	0.575	0.521	0.672	0.841	0.947	1.018	0.966
Tet. total	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Al ^{VI}	1.141	1.188	1.181	1.211	1.211	1.314	1.253	0.920	0.987	1.107	0.902
Ti	0.022	0.000	0.000	0.018	0.001	0.006	0.021	0.000	0.000	0.000	0.000
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.023	0.021	0.035	0.057
Fe	0.298	0.376	0.341	0.317	0.296	0.328	0.353	0.252	0.194	0.233	0.222
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	3.275	3.161	3.234	3.153	3.257	3.099	3.119	4.712	4.684	4.516	4.797
Са	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
К	0.018	0.000	0.000	0.000	0.000	0.000	0.000	0.018	0.000	0.000	0.000
Ni	0.999	1.007	0.988	0.989	0.915	0.851	0.942	0.033	0.083	0.047	0.026
Со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct. total	5.736	5.731	5.745	5.686	5.680	5.598	5.688	5.940	5.969	5.938	6.004
Oct. <i>R</i> ³⁺	1.141	1.188	1.181	1.211	1.211	1.314	1.253	0.943	1.008	1.142	0.959
Oct. vac. ²	0.233	0.269	0.255	0.298	0.318	0.396	0.291	0.040	0.020	0.044	- 0.032
Mg# ³	0.916	0.894	0.905	0.909	0.917	0.904	0.898	0.949	0.960	0.951	0.956
$a_{\text{Mg-Ame}} \cdot 10^3$	1.354	1.014	1.295	0.770	0.674	0.364	1.137	21.624	36.395	45.255	43.323
$a_{\text{Mg-Afcl}} \cdot 10^3$	11.500	9.625	10.676	10.035	12.916	10.346	8.559	65.767	49.559	32.316	55.203
$a_{Mg-Sud} \cdot 10^3$	9.913	13.314	12.740	16.268	19.069	28.117	17.616	0.172	0.026	0.294	-0.116
. mg oud 20											
T _{C88} , °C ⁴	155	148	154	136	123	106	154	209	243	266	249
<i>Т</i> в13, °С ⁵	118	107	112	97	90	74	104	317	469	340	-
			+				+				
						•					

Таблица 2 – Химический состав хлоритов из коры выветривания Кольского гипербазитового массива, Северный Урал

Sample	6-7-54			•	•						
Analysis	78	79	80	82	82	83	84	85	86	87	88
SiO ₂	37.21	36.80	41.93	38.50	40.16	39.32	37.80	37.34	35.72	36.39	36.70
TiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al ₂ O ₃	21.80	20.77	23.20	17.95	19.34	23.75	16.28	16.51	18.73	20.02	21.02
Cr ₂ O ₃	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	0.21	0.59
FeO	4.06	4.46	6.15	6.66	7.73	6.04	8.97	7.64	9.65	7.57	4.86
MnO	0.12	0.08	0.00	0.00	0.00	0.04	0.03	0.17	0.00	0.00	0.00
MgO	36.15	37.43	22.96	27.70	25.03	26.91	26.30	25.82	31.28	34.02	36.39
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na ₂ O	0.00	0.00	0.00	0.00	0.46	0.00	0.35	0.32	0.00	0.00	0.00
K ₂ O	0.00	0.00	0.15	0.00	0.10	0.13	0.00	0.08	0.00	0.00	0.00
NiO	0.27	0.39	5.50	9.19	7.18	3.81	10.28	12.12	4.29	1.79	0.44
CoO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.97	99.93	99.89	100.00	100.00	100.00	100.01	100.00	100.01	100.00	100.00
Si <i>apfu</i> ¹	3.047	3.027	3.478	3.307	3.416	3.258	3.313	3.228	3.066	3.052	3.024
Aliv	0.953	0.973	0.522	0.693	0.584	0.742	0.687	0.712	0.934	0.948	0.976
Tet. total	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Alvi	1.150	1.040	1.747	1.124	1.355	1.577	0.995	1.001	0.961	1.031	1.065
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr	0.023	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.023	0.014	0.038
Fe	0.278	0.307	0.427	0.478	0.550	0.419	0.658	0.563	0.693	0.531	0.335
Mn	0.008	0.006	0.000	0.000	0.000	0.003	0.002	0.013	0.000	0.000	0.000
Mg	4.412	4.589	2.839	3.547	3.174	3.324	3.437	3.389	4.002	4.254	4.469
Са	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.000	0.000	0.000	0.000	0.076	0.000	0.059	0.055	0.000	0.000	0.000
К	0.000	0.000	0.016	0.000	0.011	0.014	0.000	0.009	0.000	0.000	0.000
Ni	0.018	0.026	0.367	0.635	0.491	0.254	0.725	0.858	0.296	0.121	0.029
Со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct. total	5.890	5.967	5.380	5.784	5.571	5.576	5.816	5.824	5.975	5.951	5.937
Oct. R ³⁺	1.173	1.040	1.747	1.124	1.355	1.577	0.995	1.001	0.984	1.045	1.103
Oct. vac. ²	0.098	0.033	0.612	0.216	0.386	0.417	0.154	0.144	0.013	0.042	0.044
Mg# ³	0.941	0.937	0.869	0.881	0.852	0.888	0.839	0.858	0.852	0.889	0.930
$a_{\rm Mg-Ame} \cdot 10^3$	30.984	39.256	0.343	2.516	0.787	3.270	2.001	2.115	17.277	24.967	35.566
$a_{Mg-Afcl} \cdot 10^3$	32.679	39.934	5.732	17.230	10.498	9.495	14.682	13.101	20.766	27.664	34.051
$a_{\text{Mg-Sud}} \cdot 10^3$	2.807	0.118	100.597	10.501	36.519	83.617	3.440	2.851	0.005	0.196	0.266
<i>Т</i> С88, °С4	245	252	106	161	126	177	159	167	239	243	252
<i>Т</i> в13, °С ⁵	227	378	56	127	83	94	149	156	568	333	331

Таблица 2 – Химический состав хлоритов из коры выветривания Кольского гипербазитового массива, Северный Урал

Sample	6-7-54										
Analysis	89	90	91	92	93	94	95	96	97	98	99
SiO ₂	36.69	36.88	38.99	37.05	37.89	38.08	37.76	37.14	37.45	38.25	36.79
TiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al ₂ O ₃	21.14	20.91	19.92	17.79	18.97	22.01	17.99	14.73	18.49	21.26	20.43
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	4.63	4.30	7.11	7.44	8.30	7.79	7.16	12.65	6.14	6.88	4.66
MnO	0.00	0.00	0.00	0.00	0.19	0.00	0.11	0.00	0.00	0.00	0.00
MgO	37.36	37.55	27.57	25.71	29.75	28.57	26.30	25.18	29.43	26.82	37.60
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na ₂ O	0.00	0.00	0.00	0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K ₂ O	0.00	0.00	0.00	0.18	0.10	0.10	0.00	0.16	0.11	0.15	0.00
NiO	0.19	0.37	6.42	11.39	4.90	3.35	10.67	10.01	8.27	6.45	0.51
CoO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.01	100.01	100.01	99.89	100.00	99.90	99.99	99.87	99.89	99.81	99.99
Si apfu ¹	3.013	3.027	3.300	3.248	3.221	3.194	3.280	3.320	3.210	3.243	3.029
Alw	0.987	0.973	0.700	0.752	0.779	0.806	0.720	0.680	0.790	0.757	0.971
Tet. total	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Al ^{VI}	1.059	1.049	1.287	1.086	1.121	1.369	1.121	0.873	1.078	1.368	1.011
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.318	0.295	0.503	0.545	0.590	0.546	0.520	0.946	0.440	0.488	0.321
Mn	0.000	0.000	0.000	0.000	0.014	0.000	0.008	0.000	0.000	0.000	0.000
Mg	4.574	4.594	3.479	3.360	3.770	3.572	3.405	3.356	3.761	3.390	4.615
Са	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.000	0.000	0.000	0.056	0.000	0.000	0.000	0.000	0.000	0.000	0.000
К	0.000	0.000	0.000	0.020	0.000	0.011	0.000	0.018	0.012	0.016	0.000
Ni	0.013	0.024	0.437	0.803	0.335	0.226	0.745	0.720	0.570	0.440	0.034
Со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct. total	5.964	5.962	5.706	5.795	5.829	5.713	5.800	5.894	5.850	5.686	5.980
Oct. <i>R</i> ³⁺	1.059	1.049	1.287	1.086	1.121	1.369	1.121	0.873	1.078	1.368	1.011
Oct. vac. ²	0.036	0.038	0.294	0.167	0.171	0.281	0.200	0.097	0.144	0.306	0.020
Mg# ³	0.935	0.940	0.874	0.860	0.865	0.867	0.868	0.780	0.895	0.874	0.935
$a_{ m Mg-Ame} \cdot 10^3$	41.573	39.545	2.675	2.722	6.045	6.173	2.445	1.730	5.892	3.493	39.468
$a_{ m Mg-Afcl} \cdot 10^3$	37.541	40.058	14.567	11.468	20.106	13.018	13.018	12.903	20.208	11.074	41.765
$a_{ m Mg-Sud}\cdot 10^3$	0.157	0.175	27.245	4.858	7.555	33.404	8.126	0.790	4.467	33.596	0.026
<i>Т</i> с88, °С4	256	252	163	180	189	124	170	157	192	182	251
<i>Т</i> в13, °С ⁵	366	356	109	150	154	97	134	186	167	112	462

Таблица 2 – Химический состав хлоритов из коры выветривания Кольского гипербазитового массива, Северный Урал

Sample	6-7-54										
Analysis	100	101	102	103	104	105	106	107	108	109	
SiO ₂	36.61	37.03	36.25	38.06	38.48	40.86	38.52	41.66	36.49	36.03	
TiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Al ₂ O ₃	19.78	22.37	21.03	20.48	18.29	24.28	16.82	27.74	21.82	22.32	
Cr ₂ O ₃	0.00	0.00	0.46	0.00	0.00	0.00	0.00	0.00	0.80	0.00	
FeO	7.08	6.11	4.59	6.31	6.95	5.58	6.76	4.94	5.74	4.27	
MnO	0.00	0.00	0.08	0.00	0.08	0.00	0.00	0.00	0.00	0.00	
MgO	30.52	32.02	36.81	31.38	25.41	24.39	27.82	22.02	34.70	37.04	
CaO	0.16	0.15	0.07	0.08	0.00	0.07	0.14	0.07	0.00	0.00	
Na ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
K ₂ O	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NiO	5.69	2.32	0.72	3.56	10.79	4.82	9.93	3.57	0.44	0.34	
CoO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Total	99.99	100.00	100.01	99.87	100.00	100.00	99.99	100.00	99.99	100.00	
Si apfu ¹	3.117	3.077	2.991	3.184	3.331	3.372	3.328	3.386	3.016	2.957	
Aliv	0.883	0.923	1.009	0.816	0.669	0.628	0.672	0.614	0.984	1.043	
Tet. total	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	
Al ^{VI}	1.101	1.268	1.037	1.204	1.197	1.734	1.041	2.043	1.141	1.116	
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Cr	0.000	0.000	0.030	0.000	0.000	0.000	0.000	0.000	0.052	0.000	
Fe	0.504	0.425	0.317	0.442	0.503	0.385	0.488	0.336	0.397	0.293	
Mn	0.000	0.000	0.006	0.000	0.006	0.000	0.000	0.000	0.000	0.000	
Mg	3.873	3.967	4.528	3.914	3.279	3.001	3.583	2.668	4.276	4.532	
Ca	0.015	0.013	0.006	0.007	0.000	0.000	0.013	0.006	0.000	0.000	
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
К	0.016	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	
Ni	0.390	0.155	0.048	0.240	0.751	0.320	0.690	0.233	0.029	0.022	
Со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Oct. total	5.868	5.814	5.965	5.799	5.736	5.440	5.803	5.280	5.895	5.963	
Oct. R ³⁺	1.101	1.268	1.067	1.204	1.197	1.734	1.041	2.043	1.193	1.116	
Oct. vac. ²	0.109	0.172	0.014	0.194	0.264	0.553	0.184	0.714	0.079	0.037	
Mg# ³	0.885	0.903	0.935	0.899	0.867	0.886	0.880	0.888	0.915	0.939	
$a_{\text{Mg-Ame}} \cdot 10^3$	11.749	17.428	43.153	9.038	1.502	1.015	2.194	0.640	31.243	52.245	
$a_{\text{Mg-Afcl}} \cdot 10^3$	19.130	18.606	34.178	22.677	11.362	6.492	19.230	3.070	25.293	30.237	
$a_{Mg-Sud} \cdot 10^3$	2.505	11.674	0.009	13.161	15.162	118.508	6.244	204.346	1.399	0.171	
T _{C88} , °C ⁴	222	235	263	201	154	140	154	136	255	274	
<i>Т</i> в13, °С ⁵	205	171	592	150	111	70	135	58	256	379	
			1	1	l	L		1		1	l