МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра вычислительной и экспериментальной механики

Авторы-составители: Терпугов Виктор Николаевич

Русаков Сергей Владимирович

Рабочая программа дисциплины

ВЫЧИСЛИТЕЛЬНОЕ МОДЕЛИРОВАНИЕ В МЕХАНИКЕ СПЛОШНЫХ СРЕДКод УМК 88345

Утверждено Протокол №6 от «16» июня 2020 г.

1. Наименование дисциплины

Вычислительное моделирование в механике сплошных сред

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: **01.03.02** Прикладная математика и информатика направленность Интеллектуальный анализ данных и математическое моделирование

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Вычислительное моделирование в механике сплошных сред у обучающегося должны быть сформированы следующие компетенции:

01.03.02 Прикладная математика и информатика (направленность : Интеллектуальный анализ данных и математическое моделирование)

ПК.2 способность понимать, совершенствовать и применять современный математический аппарат

4. Объем и содержание дисциплины

Направления подготовки	01.03.02 Прикладная математика и информатика (направленность:
	Интеллектуальный анализ данных и математическое
	моделирование)
форма обучения	очная
№№ триместров,	8
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	4
Объем дисциплины (ак.час.)	144
Контактная работа с	56
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	14
занятий	
Проведение лабораторных	42
работ, занятий по	
иностранному языку	
Самостоятельная работа	88
(ак.час.)	
Формы текущего контроля	Защищаемое контрольное мероприятие (1)
	Итоговое контрольное мероприятие (1)
	Письменное контрольное мероприятие (2)
Формы промежуточной	Экзамен (8 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Раздел 1. Общая постановка задач вычислительного моделирования в MCC. 3D моделирование в ANSYS. Основы метода конечных элементов.

В основу курса положено представление о цикле вычислительного эксперимента как основной современной технологией проведения вычислительного моделирования на современных вычислительных системах. Эта технология одновременно является математической, вычислительной и компьютерной и включает в себя следующие этапы:

- формулировка рассматриваемой содержательной задачи в терминах содержательной области исследования (в нашем случае механики сплошных сред);
- постановка исходной математической модели в терминах "чистой", классической математики; как правило, это дифференциальная постановка задачи; поскольку в настоящем курсе для дискретизации используется метод конечных элементов (МКЭ), который, соответственно, лежит в основе рассматриваемых здесь пакетов программ (ANSYS), то этот этап должен содержать изучение математических постановок в слабой форме (вариационных постановок задач), поскольку МКЭ решает вариационную задачу;
- построение расчетной схемы (дискретизация задачи, т.е. реализация численного метода); в настоящем курсе рассматривается метод конечных элементов, который сравнивается с методом конечных разностей;
- построение алгоритма на основе построенной на предыдущем этапе конечно-элементной расчетной схемы;
- разработка программы и/или выбор существующего программного средства и вычислительной среды (используется пакет ANSYS);
- осуществление собственно вычислительного моделирования (вычислительное решение задачи). В первом разделе курса рассматривается общее описание пакета ANSYS и 3D-моделирование в этом пакете, а также переход от исходной (дифференциальной) математической постановки задачи к уравнениям в слабой форме вариационным постановкам задачи; даются основы метода конечных элементов математической технологии, используемой в большинстве широко используемых в инженерной практике современных пакетов программ, в том числе в ANSYS. В качестве моделируемых задач рассматриваются абстрактные одномерные и двумерные математические уравнения. В дальнейшем (во втором разделе курса) в качестве примеров рассмотрены задачи из линейной теории упругости и теплопроводности.

Вычислительное моделирование и цикл вычислительного эксперимента.

В первой лекции учебного курса анализируется представление о цикле вычислительного эксперимента как основной современной технологией проведения вычислительного моделирования на современных вычислительных системах. .

Общее описание пакета ANSYS и 3D-моделирование в среде ANSYS. Часть 1. Дается общее описание пакета ANSYS и и изучается 3D-моделирование в среде ANSYS.

Общие настройки пакета ANSYS. Определение общих свойств расчетной модели. Изучаются общие настройки и определение общих свойств расчетной модели в пакете ANSYS.

Создание 2D и 3D геометрических моделей в пакете ANSYS. Изучается создание 2D и 3D геометрических моделей в пакете ANSYS.

Дифференциальные и вариационные постановки задач МСС.

Поскольку метод конечных элементов - основная математическая технология дискретизации современных математических постановок задач, лежащая в основе подавляющего большинства используемых в инженерной практике пакетов прикладных программ, реализуется на вариационных

постановках задач, то в начале курса рассматривается переход от дифференциальной постановки задачи к вариационной, т.е. к уравнениям в слабой форме и функционалам. В качестве моделируемых задач рассматриваются абстрактные одномерные и двумерные математические уравнения. В дальнейшем в качестве примеров рассмотрены задачи из линейной теории упругости и теплопроводности.

Переход от дифференциальной постановки к уравнению в слабой форме (вариационной постановке задачи) для двухточечной краевой задачи.

Рассматривается переход от дифференциальной постановки задачи к вариационной (уравнению в слабой форме и функционалу) и обратно для одномерной краевой задачи, т.е. в покомпонентной и в операторной формах выполняется переход от дифференциальной постановки к вариационной и обратно: от вариационной к дифференциальной - получение уравнений Эйлера.

Переход от дифференциальной постановки к уравнению в слабой форме (вариационной постановке задачи) для уравнений в общем виде.

Рассматривается переход от дифференциальной постановки задачи к вариационной (уравнению в слабой форме и функционалу) и обратно для двух- и трехмерной краевой задачи, т.е. в покомпонентной и в операторной формах выполняется переход от дифференциальной постановки к вариационной и обратно: от вариационной к дифференциальной - получение уравнений Эйлера.

МКР и МКЭ – основные математические технологии построения расчетных схем для решения задач МСС. Основы метода конечных элементов.

Даются основы метода конечных элементов – математической технологии, используемой в большинстве широко используемых для вычислительного моделирования современных пакетов программ, в том числе в ANSYS. В качестве моделируемых задач рассматриваются абстрактные одномерные и двумерные математические уравнения. При рассмотрение теории МКЭ проводится сравнение с методом конечных разностей (МКР). В дальнейшем в качестве примеров рассмотрены задачи из линейной теории упругости и теплопроводности.

Построение конечных элементов для одномерных, двумерных и трехмерных конечных элементов. Связь функций формы и базисных функций суммы Ритца.

Рассматривается построение конечных элементов для одномерных, двумерных и трехмерных конечных элементов. Обсуждается связь функций формы и базисных функций суммы Ритца. В качестве моделируемых задач рассматриваются абстрактные одномерные, двумерные и трехмерные математические уравнения.

Построение локальных и глобальных матриц конечных элементов. Реализация краевых условий в МКЭ.

Обсуждается построение локальных и глобальных матриц в методе конечных элементов, а также реализация краевых условий в МКЭ.

Реализация МКЭ для двухточечной краевой задачи и для двумерной задачи.

Обсуждаются все этапы реализации метода конечных элементов для двухточечной краевой задачи и для двумерной задачи.

Формирование СЛАУ в МКЭ. Анализ свойств матрицы СЛАУ в МКЭ и способов ее решения на ЭВМ.

Обсуждается этап технологии МКЭ, который получил название "сборки" - формирование общей разрешающей системы линейных алгебраических уравнений. Анализируются ее свойства, способы представления в ЭВМ и способы решения.

Определение МКЭ и распространение технологии МКЭ для различных классов задач.

Дается определение метода конечных элементов как математической технологии специфического выбора базисных функций при дискретизации различных классов задач, сформулированных в различных вариационных формах (различные проекционные схемы). В общем виде описывается распространение технологии МКЭ на различные классы задач.

Раздел 2. Вычислительное моделирование в пакете ANSYS задач теории упругости и теплопроводности.

В втором разделе курса изучается построение геометрической и конечно-элементной расчетной модели в пакете ANSYS, задание различных нагрузок (краевых условий), решение полученной конечно-элементной задачи и анализ средствами пакета ANSYS полученного численно решения. В качестве моделируемых задач рассматриваются задачи из линейной теории упругости и теплопроводности.

Общее описание пакета ANSYS и современный подход к решению задач MCC в среде ANSYS. Часть 2.

Приводится общее описание пакета ANSYS; описывается его состав и возможности различных модулей для решения различных задач MCC.

Вычислительное моделирование в ANSYS: создание конечно-элементной модели и решение задачи в среде пакета ANSYS.

Рассматривается вычислительной моделирование в среде пакета ANSYS. Изучается построение геометрической и конечно-элементной расчетной моделей в пакете ANSYS, задание различных нагрузок (краевых условий), решение данной модельной задачи и анализ средствами пакета ANSYS полученного решения. В качестве моделируемых задач рассматриваются задачи из линейной теории упругости и теплопроводности.

Общие настройки решателей и управление расчетами в пакете ANSYS.

Рассматривается вычислительной моделирование в среде пакета ANSYS. Изучается задание общих настроек и свойств расчетной модели.

Задание нагрузок.

Рассматривается вычислительной моделирование в среде пакета ANSYS. Изучается задание нагрузок.

Создание конечно-элементной модели.

Рассматривается вычислительной моделирование в среде пакета ANSYS. Изучается построение конечно-элементных сеток расчетной модели.

Решение задачи в пакете ANSYS.

Рассматривается вычислительной моделирование в среде пакета ANSYS. Изучается решение полученной модельной задачи.

Постпроцессорная обработка результатов.

Рассматривается вычислительной моделирование в среде пакета ANSYS. Изучается постпроцессорная обработка полученных результатов и анализ выполненного моделирования средствами пакета ANSYS.

Дифференциальные и вариационные постановки статических задач линейной теории упругости. Конечно-элементные реализации статических задач линейной теории упругости и их моделирование в ANSYS.

Рассматривается вычислительной моделирование в среде пакета ANSYS задач линейной теории

упругости . Изучается построение геометрической и конечно-элементной расчетной моделей в пакете ANSYS, задание различных нагрузок (краевых условий), решение данной модельной задачи и анализ средствами пакета ANSYS полученного решения. Реализуется в пакете ANSYS решение задачи определения напряженно-деформированного состояния трехмерной расчетной модели, которая строится на основе полученной в первой части курса 2D геометрической модели. Отчет по выполненному решению в пакете оформляется в виде письменного отчета (контрольная точка).

Конечно-элементные реализации задач теплопроводности и их моделирование в ANSYS Mechanical и ANSYS CFX.

Рассматривается вычислительное моделирование в среде пакета ANSYS задач теплопроводности.

Письменная работа (экзамен)

Заключительное итоговое отчетное занятие: письменный экзамен.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Басов, К. А. Графический интерфейс комплекса ANSYS / К. А. Басов. 2-е изд. Саратов : Профобразование, 2019. 239 с. ISBN 978-5-4488-0061-0. Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/63587.html
- 2. Федорова, Н. Н. Моделирование гидрогазодинамических процессов в ПК ANSYS 17.0 : учебное пособие / Н. Н. Федорова, С. А. Вальгер, Ю. В. Захарова. Новосибирск : Новосибирский государственный архитектурно-строительный университет (Сибстрин), ЭБС АСВ, 2016. 169 с. ISBN 978-5-7795-0798-1. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/68793.html
- 3. Терпугов В. Н., Лалин В. В. Конечно-элементные технологии построения расчетных алгоритмов для решения задач механики сплошных сред:методическое пособие/В. Н. Терпугов, В. В. Лалин.-Пермь, 2012, ISBN 978-5-7944-1916-0.-1. http://www.campus.psu.ru/library/node/13978
- 4. Терпугов В. Н.,Вертгейм И. И. Современные численные методы механики деформируемого твердого тела. Основы технологии метода конечных элементов:учебно-методическое пособие/В. Н. Терпугов, И. И. Вертгейм.-Пермь,2012, ISBN 978-5-7944-1909-2,2-е изд..-1. https://elis.psu.ru/node/189715
- 5. Басов, К. А. ANSYS : справочник пользователя / К. А. Басов. 2-е изд. Саратов : Профобразование, 2019. 640 с. ISBN 978-5-4488-0064-1. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/63588.html

Дополнительная:

- 1. Шаманин, А. Ю. Расчеты конструкций методом конечных элементов в ANSYS : методические рекомендации / А. Ю. Шаманин. Москва : Московская государственная академия водного транспорта, 2012. 72 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/47951.html
- 2. Басов, К. А. Графический интерфейс комплекса ANSYS / К. А. Басов. 2-е изд. Саратов : Профобразование, 2019. 239 с. ISBN 978-5-4488-0061-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/63587.html
- 3. Федорова, Н. Н. Моделирование гидрогазодинамических процессов в ПК ANSYS 17.0 : учебное пособие / Н. Н. Федорова, С. А. Вальгер, Ю. В. Захарова. Новосибирск : Новосибирский государственный архитектурно-строительный университет (Сибстрин), ЭБС АСВ, 2016. 169 с. ISBN 978-5-7795-0798-1. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/68793.html
- 4. Каплун А. Б., Морозов Е. М., Олферьева М. А. ANSYS в руках инженера:практ. пособие/А. Б. Каплун, Е. М. Морозов, М. А. Олферьева.-М.:УРСС, 2004, ISBN 5-354-00729-1.-272.
- 5. Тухфатуллин, Б. А. Численные методы расчета строительных конструкций. Метод конечных элементов: учебное пособие для академического бакалавриата / Б. А. Тухфатуллин. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 157 с. (Бакалавр. Академический курс). ISBN 978-5-534-08899-1. Текст: электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/442338

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://www.psu.ru/elektronnye-resursy-dlya-psu
http://window.edu.ru/

Вдиное окно доступа к образовательным ресурсам

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Вычислительное моделирование в механике сплошных сред** предполагает использование следующего программного обеспечения и информационных справочных систем:

Образовательный процесс по дисциплине предполагает использование следующего программного обеспечения и информационных справочных систем:

- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательной среду университета.

Необходимое лицензионное и (или) свободно распространяемое программное обеспечение:

- приложение, позволяющее просматривать и воспроизводить медиаконтент PDF-файлов «Adobe Acrobat Reader DC»;
- офисный пакет приложений «LibreOffice», Alt Linux;

Heoбходимо специализированное программное обеспечение: лицензионный пакет программ ANSYS (ANSYS Mechanical и/или Ansys Multiphisics и/или ANSYS Academic Recearch). Желательно также: ANSYS CFX и/или ANSYS FLUENT;

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения практических занятий - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для групповых (индивидуальных) консультаций - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения текущего контроля - аудитория, оснащенная меловой (и) или маркерной доской. Самостоятельная работа студентов: аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-

образовательную среду университета, помещения Научной библиотеки ПГНИУ. Необходим компьютерный класс оснащенный 9-16 рабочими станциями с лицензионным программным обеспечением (пакет ANSYS), а презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Вычислительное моделирование в механике сплошных сред

Планируемые результаты обучения по дисциплине для формирования компетенции и критерии их оценивания

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
пк.2 способность понимать, совершенствовать и применять современный математический аппарат	Создание 2D геометрической модели в пакете ANSYS.	Неудовлетворител Не понимает и не может выполнить в пакете ANSYS 2D расчетную модель Удовлетворительн Плохо понимает и выполняет с большими ошибками в пакете ANSYS 2D расчетную модель. Хорошо Не очень четко понимает и выполняет с некоторыми ошибками в пакете ANSYS 2D расчетную модель. Отлично Хорошо понимает и выполняет, возможно, с незначительными ошибками в пакете
		ANSYS 2D расчетную модель.
пк.2 способность понимать, совершенствовать и применять современный математический аппарат	В результате изучения данного, а также следующего разделов (теория МКЭ) у студента будет сформировано представление об основах технологии метода конечных элементов, включая построение вариационных постановок решаемой задачи.	Не понимает и не может выполнить 1. переход от дифференциальной постановки задачи к вариационной и обратно; 2. может построить расчетную схему метода конечных элементов. Удовлетворительн Плохо понимает и выполняет с большими ошибками 1. переход от дифференциальной постановки задачи к вариационной и обратно; 2. построение расчетной схемы метода конечных элементов. Хорошо Не очень четко понимает и выполняет с некоторыми ошибками 1. переход от дифференциальной постановки задачи к вариационной и обратно; 2. построение расчетной схемы метода конечных элементов. Отлично
		Отлично

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично Хорошо понимает и выполняет, возможно, с незначительными ошибками 1. переход от дифференциальной постановки задачи к вариационной и обратно; 2. построение расчетной схемы метода конечных элементов.
пк.2 способность понимать, совершенствовать и применять современный математический аппарат	На основе созданной в предыдущем разделе курса 2D геометрической модели создать 3D-модель, для которой в рамках линейной статической теории упругости сформулировать расчетную задачу определения напряженно-деформированного состояния. Решить полученную задачу в пакете ANSYS.	Не может 1. Сформулировать расчетную задачу на основе построенной ранее 2D-модели. 2. Не может решить в пакете ANSYS сформулированную задачу. Удовлетворительн 1. С большим трудом сформулировал расчетную задачу на основе построенной ранее 2D-модели. 2. С очень большими ошибками решил в пакете ANSYS сформулированную задачу. Хорошо 1. Со значительными трудностями сформулировал расчетную задачу на основе построенной ранее 2D-модели. 2. С некоторыми ошибками решил в пакете ANSYS сформулированную задачу на основе построенной ранее 2D-модели. 1. Сформулировал расчетную задачу на основе построенной ранее 2D-модели. 2. Возможно, с незначительными ошибками решил в пакете ANSYS сформулированную задачу на основе построенной ранее 2D-модели. 2. Возможно, с незначительными ошибками решил в пакете ANSYS сформулированную задачу
ПК.2 способность понимать, совершенствовать и применять современный математический аппарат	Итоговая письменная контрольная работа проверяет в какой степени сформированы у студента профессиональные компетенции по - построению расчетных моделей и их формулировке в дифференциальной и вариационной формах; - построению конечно-элементных расчетных схем для сформулированной расчетной задачи;	 основные этапы цикла вычислительного эксперимента, которые необходимо реализовать для получения адекватного, эффективного и качественного вычислительного решения рассматриваемой задачи МСС; при этом плохо понимает и не умеет: выбирать необходимые программные и

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
	для решения задачи.	Неудовлетворител — с большими ошибками владеет навыками вычислительного моделирования в современных программно-аппаратных средах для решения конкретных прикладных задач МСС; не может создать расчетную вычислительную модель в пакете ANSYS.
		Удовлетворительн
		Студент знает: — основные этапы цикла вычислительного эксперимента, которые необходимо реализовать для получения адекватного вычислительного решения рассматриваемой задачи МСС; —при этом в основном умеет выбирать необходимые программные и аппаратные средства для получения вычислительного решения рассматриваемой задачи МСС; — с ошибками владеет навыками вычислительного моделирования в современных программно-аппаратных средах для решения конкретных прикладных задач МСС; с грубыми ошибками может создать расчетную вычислительную модель в пакете ANSYS.
		Хорошо
		Студент достаточно твердо знает: — этапы цикла вычислительного эксперимента, которые необходимо реализовать для получения адекватного, эффективного и качественного вычислительного решения рассматриваемой задачи МСС; — в основном понимает и умеет выбирать необходимые программные и аппаратные средства для получения адекватного, эффективного и качественного вычислительного решения рассматриваемой задачи МСС; — с небольшими ошибками владеет навыками вычислительного моделирования в современных программно-аппаратных средах для решения конкретных прикладных

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Хорошо задач МСС; с небольшими трудностями и ошибками может создать расчетную вычислительную модель в пакете ANSYS.
		Отлично Студент знает: — этапы цикла вычислительного эксперимента, которые необходимо реализовать для получения адекватного, эффективного и качественного вычислительного решения рассматриваемой задачи МСС; — умеет выбирать необходимые программные и аппаратные средства для получения адекватного, эффективного и качественного вычислительного решения рассматриваемой задачи МСС; — владеет, возможно с небольшими ошибками, навыками вычислительного моделирования в современных программно-аппаратных средах для решения конкретных прикладных задач МСС; может создать расчетную вычислительную модель в пакете ANSYS.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 44 до 60

«неудовлетворительно» / «незачтено» менее 44 балла

Компетенция	Мероприятие	Контролируемые элементы
	текущего контроля	результатов обучения
ПК.2	Создание 2D и 3D	Умение поставить задачу построения
способность понимать,	геометрических моделей в	геометрической расчетной модели
совершенствовать и применять	пакете ANSYS.	задачи и реализовать ее средствами
современный математический	Письменное контрольное	пакета ANSYS
аппарат	мероприятие	
ПК.2	Формирование СЛАУ в	Умение переходить от
способность понимать,	МКЭ. Анализ свойств	дифференциальных постановок задач к
совершенствовать и применять	матрицы СЛАУ в МКЭ и	вариационным и обратно, а также
современный математический	способов ее решения на	строить конечно-элементные расчетные
аппарат	ЭВМ.	схемы для решения данных задач.
	Письменное контрольное	
	мероприятие	
ПК.2	Дифференциальные и	Умение ставить расчетную задач,
способность понимать,	вариационные постановки	формулировать ее математическую
совершенствовать и применять	статических задач	постановку в дифференциальной и
современный математический	линейной теории	вариационной формах, решать данную
аппарат	упругости.	задачу в пакете ANSYS.
	Конечно-элементные	
	реализации статических	
	задач линейной теории	
	упругости и их	
	моделирование в ANSYS.	
	Защищаемое контрольное	
	мероприятие	

Компетенция	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ПК.2 способность понимать, совершенствовать и применять современный математический аппарат	Письменная работа (экзамен) Итоговое контрольное мероприятие	Контролируется понимание всех разделов настоящего курса:- умение создавать расчетные модели;- умение переходить от дифференциальных постановок к вариационным и обратно;- знание основ метода конечных элементов;- умение пользоваться пакетом ANSYS для осуществления вычислительного моделирования.

Спецификация мероприятий текущего контроля

Создание 2D и 3D геометрических моделей в пакете ANSYS.

Продолжительность проведения мероприятия промежуточной аттестации: **4 часа** Условия проведения мероприятия: **в часы самостоятельной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **20** Проходной балл: **9**

Показатели оценивания	Баллы
Знание команд пакета ANSYS и умение ими пользоваться при построении расчетной	12
геометрической модели	
Умение читать чертежи, знание геометрии, математики, информатики	5
Общие навыки работы в пакте ANSYS	3

Формирование СЛАУ в МКЭ. Анализ свойств матрицы СЛАУ в МКЭ и способов ее решения на ЭВМ.

Продолжительность проведения мероприятия промежуточной аттестации: **1 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **15** Проходной балл: **7**

Показатели оценивания	Баллы
Умение переходить от дифференциальной постановки к вариационной и обратно	5
Умение переходить от вариационной постановки к СЛАУ в технологии метода конечных	5
элементов	
Умение строить сетку конечных элементов и нумеровать узлы сетки таким образом, чтобы	5
получались матрицы с минимальным количеством хранимых элементов (понимание связи	
нумерации узлов конечно-элементной сетки и структуры конечно-элементных матриц)	

Дифференциальные и вариационные постановки статических задач линейной теории упругости. Конечно-элементные реализации статических задач линейной теории упругости и их моделирование в ANSYS.

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 25

Проходной балл: 11

Показатели оценивания	Баллы
Реализация расчетной модели в пакете ANSYS	10
Формулировка исходной, дифференциально и вариационной постановок задач	8
Выполнение вычислительного моделирования с сформулированной и реализованной в	7
пакете ANSYS задачей, анализ и интерпретация результатов, оформление отчета	

Письменная работа (экзамен)

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Умение создавать расчетные модели и их формулировать в дифференциальной и вариационной формах.	10
Общее понимание вычислительного моделирования с использованием больших	10
САЕ-пакетов типа ANSYS и умение анализировать полученные результаты	
Умение пользоваться пакетом ANSYS для осуществления вычислительного моделирования.	10
Знание основ метода конечных элементов.	10