МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра фундаментальной математики

Авторы-составители: Норина Татьяна Викторовна

Скачкова Елена Александровна

Рабочая программа дисциплины

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Код УМК 95791

Утверждено Протокол №9 от «22» мая 2020 г.

1. Наименование дисциплины

Уравнения математической физики

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в обязательную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 01.03.01 Математика

направленность Программа широкого профиля

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Уравнения математической физики** у обучающегося должны быть сформированы следующие компетенции:

01.03.01 Математика (направленность : Программа широкого профиля)

ОПК.1 Способен применять фундаментальные знания, полученные в области математических наук, и использовать их в профессиональной деятельности

Индикаторы

ОПК.1.2 Применяет фундаментальные знания в области математики для решения прикладных задач

4. Объем и содержание дисциплины

Направления подготовки	01.03.01 Математика (направленность: Программа широкого профиля)
форма обучения	очная
№№ триместров,	8
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	4
Объем дисциплины (ак.час.)	144
Контактная работа с	56
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	28
занятий	
Проведение практических	28
занятий, семинаров	
Самостоятельная работа	88
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Итоговое контрольное мероприятие (1)
	Письменное контрольное мероприятие (3)
Формы промежуточной	Экзамен (8 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Уравнения математической физики

Рассматриваются вопросы теории линейных уравнений в частных производных второго порядка. Проводится классификация уравнений, рассматриваются физические процессы, приводящие к этим уравнениям, математические постановки задач и некоторые общие вопросы теории.

Уравнения гиперболического типа (волновые уравнения) и решение задачи Коши для этих уравнений в различных пространствах, физическое толкование получившихся решений. Излагается метод Фурье (разделения переменных) решения смешанных краевых задач на примере уравнений гиперболического типа.

Уравнения параболического типа на примере задач Коши и смешанной краевой задачи для уравнения теплопроводности. Строятся фундаментальное решение уравнения, функции влияния мгновенного источника. Исследована корректность постановок рассмотренных задач.

Уравнения эллиптического типа и решению краевых задач, доказательство корректности их постановки. Свойства гармонических функций и теоремы для них. Основные методы решения краевых задач

Входной контроль

Входной контроль осуществляется по основным разделам высшей математики: линейная алгебра, аналитическая геометрия, математический анализ, дифференциальные уравнения

Общие понятия об уравнениях математической физики

Многие физические процессы в механике, теплофизике, электричестве и магнетизме, оптике, описываются с помощью уравнений с частными производными. К основным уравнениям с частными производными относятся:

- трехмерное уравнение Лапласа
- волновое уравнение
- уравнение теплопроводности.

Количество независимых переменных определяется размерностью пространства, в котором происходит физическое явление, и временнОй переменной (в случае нестационарных явлений)

Классификация уравнений. Постановка задач

Все линейные уравнения второго порядка с частными производными относятся к одному из трех типов:

- эллиптическому (описывают стационарные процессы)
- гиперболическому (описывают волновые процессы)
- параболическому (описывают процессы распространения тепла, диффузии и некоторые другие) В уравнениях гиперболического и параболического типов переменная t носит характер временнОй переменной.

Решением (классическим) дифференциального уравнения с частными производными называется функция (обладающая производными, входящими в уравнение), которая при подстановке в уравнение обращает его в тождество по независимым переменным в рассматриваемой области.

Для того, чтобы выделить единственное решение из множества решений, необходимо задать дополнительные условия. Эти условия бывают разных видов - в зависимости от типа уравнений. Задача для уравнений с частными производными - это уравнение с дополнительными условиями.

Для нестационарных процессов, изучаемых в неограниченном пространстве, необходимо задавать начальные условия. В этом случае приходим к задаче Коши.

Если физический процесс рассматривается в ограниченной области пространства, то приходим к краевой задаче для стационарных явлений и смешанной задаче для нестационарных явлений.

Уравнения гиперболического типа

Рассматривается постановка и решение начальной задачи для уравнений гиперболического вида.

Решение таких уравнений можно представить себе как функции, изменяющиеся с течением времени от заданного начального состояния в неограниченном пространстве.

Рассматривается решение задачи Коши для однородной струны (одномерное пространство, формула Даламбера), для однородной мембраны, для колебаний трехмерного пространства - формула Кирхгофа.

Текущий контроль 1

Текущий контроль №1 включает в себя выполнение следующих заданий

- Сдача коллоквиума по основным терминам курса
- Решение трех задач Коши для гиперболического уравнения и использования формулы Даламбера
- Выполнение контрольной работы по постановке задач и решения задачи Коши

Задачи на собственные значения

Формулируется и решается задача о нахождении собственных значений и системы собственных функций для построения решений задач в рядах Фурье.

Метод Фурье

Эффективным методом решения краевых и смешанных задач является метод разделения переменных (метод Фурье). Общая идея метода заключается в нахождении множества решений однородного уравнения с частными производными, удовлетворяющих определенным граничным условиям. Эти решения являются теми "атомами", из которых строится "общее" решение на основе принципа линейной суперпозиции. Коэффициенты в разложении находятся из начальных условий.

Уравнения параболического типа

Типичным примером уравнения параболического типа второго порядка служит уравнение теплопроводности. Описывает процессы, необратимые во времени. Решение уравнения параболического типа имеет гладкость любого конечного порядка.

Доказана теорема о максимуме решения параболического уравнения. Получены решения задачи Коши и краевых задач, определено понятие мгновенного точечного источника тепла.

Текущий контроль 2

Текущий контроль №2 включает в себя выполнение следующих заданий:

- Решение трех смешанных задач параболического и гиперболического типов (для двух задач результаты представить и графически)
- Выполнение контрольной работы по решению смешанных задач (2 задачи)

Уравнения эллиптического типа

Фундаментальное решение уравнения Лапласа (определение, вывод формул для случая двух и трех переменных)

Вычисление производной по направлению для фундаментального решения

Определения: ограниченная (неограниченная) области, внутренняя (внешняя) области

Постановка краевых задач для уравнений эллиптического типа

Формулы Грина (вывод, формулировка для гармонических функций)

Свойство 1 единственности гармонической функции (с доказательством), следствие о единственности решения внутренней задачи Дирихле

Свойство 2 единственности решения II краевой задачи (с доказательством), следствие о единственности решения внутренней задачи Неймана

Свойство 3 о нормальной производной гармонической функции. Условие разрешимости задачи Неймана для уравнения Пуассона

Теорема о интегральном представлении гармонической функции (с доказательством)

Теорема о среднем значении гармонической функции на сфере (с доказательством) Следствие из теоремы о среднем значении гармонической функции (в шаре, с доказательством) Принцип экстремума гармонической функции (с доказательством)

Текущий контроль 3

Текущий контроль №3 состоит из решения трех краевых задач для уравнений эллиптического типа в декартовых и полярных координатах.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Норина Т. В.,Скачкова Е. А. Уравнения с частными производными:практикум по решению задач : учебно-методическое пособие для студентов, обучающихся по направлениям подготовки бакалавров «Математика», «Механика и математическое моделирование», «Прикладная математика и информатика»/Т. В. Норина, Е. А. Скачкова.-Пермь:Пермский государственный национальный исследовательский университет, 2019, ISBN 978-5-7944-3360-9.-112. https://elis.psu.ru/node/618623
- 2. Алашеева Е. А. Уравнения математической физики:Учебное пособие/Алашеева Е. А..-Самара:Поволжский государственный университет телекоммуникаций и информатики,2016.-162. http://www.iprbookshop.ru/71896.html
- 3. Байков, В. А. Уравнения математической физики: учебник и практикум для академического бакалавриата / В. А. Байков, А. В. Жибер. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 254 с. (Бакалавр. Академический курс). ISBN 978-5-534-02925-3. Текст: электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/437520
- 4. Норина Т. В. Уравнения математической физики: учебное пособие для студентов механикоматематического факультета/Т. В. Норина.-Пермь, 2010, ISBN 978-5-7944-1533-9.-190.-Библиогр.: с. 186-189

Дополнительная:

- 1. Владимиров В. С., Жаринов В. В. Уравнения математической физики: учебник для вузов/В. С. Владимиров, В. В. Жаринов.-Москва: Физматлит, 2000, ISBN 5-9221-0011-4.-400.-Библиогр.: с. 399
- 2. Полянин, А. Д. Уравнения и задачи математической физики в 2 ч часть 1 : справочник для академического бакалавриата / А. Д. Полянин. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 261 с. (Бакалавр. Академический курс). ISBN 978-5-534-01644-4. Текст : электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/437082
- 3. Павленко, А. Н. Уравнения математической физики: учебное пособие / А. Н. Павленко, О. А. Пихтилькова. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2013. 100 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/30134.html (дата обращения: 12.02.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/30134.html
- 4. Тихонов А. Н., Самарский А. А. Уравнения математической физики: учебник для студентов физикоматематических специальностей/А. Н. Тихонов, А. А. Самарский.-Москва: Издательство Московского университета, 2004, ISBN 5-211-04843-1.-798.-Библиогр.: с. 791
- 5. Голубева, Н. Д. Уравнения математической физики: учебно-методическое пособие / Н. Д. Голубева, Л. Н. Смирнова. Самара: Самарский государственный технический университет, ЭБС АСВ, 2020. 55 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/105081
- 6. Полянин, А. Д. Уравнения и задачи математической физики в 2 ч. Часть 2 : справочник для академического бакалавриата / А. Д. Полянин. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 333 с. (Бакалавр. Академический курс). ISBN 978-5-534-01646-8. Текст : электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/437864

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://www.psu.ru/elektronnye-resursy-dlya-psu Электронные ресурсы для ПГНИУ http://www.mathnet.ru/ Общероссийский математический портал http://window.edu.ru/ Единое окно доступа к образовательным ресурсам

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Уравнения математической физики** предполагает использование следующего программного обеспечения и информационных справочных систем:

- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательной среду университета.

Необходимое лицензионное и (или) свободно распространяемое программное обеспечение:

- приложение позволяющее просматривать и воспроизводить медиаконтент PDF-файлов «Adobe Acrobat Reader DC»;
- офисный пакет приложений «LibreOffice».

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения практических занятий - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной лоской.

Для групповых (индивидуальных) консультаций - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения текущего контроля - аудитория, оснащенная меловой (и) или маркерной доской. Самостоятельная работа студентов: аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-образовательную среду университета, помещения Научной библиотеки ПГНИУ.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Уравнения математической физики

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.1 Способен применять фундаментальные знания, полученные в области математических наук, и использовать их в профессиональной деятельности

наук, и использовать их в профессиональной деятельности		
Компетенция	Планируемые результаты	Критерии оценивания результатов
(индикатор)	обучения	обучения
ОПК.1.2	ЗНАТЬ: фундаментальные	Неудовлетворител
Применяет	понятия и утверждения	Не знает основные понятия и утверждения
фундаментальные	уравнений математической	теории уравнений математической физики.
знания в области	физики	Не умеет производить аналитические
математики для	УМЕТЬ: применять основные	расчеты в стандартных постановках, давать
решения прикладных	методы математической физики	содержательную интерпретацию результатов
задач	в стандартных постановках,	вычислений, контролировать правильность
	давать содержательную	вычислений. Демонстрирует отсутствие
	интерпретацию результатов	навыков теоретического и практического
	вычислений, их	анализа объектов, описываемых
	геометрическую	уравнениями математической физики.
	интерпретацию,	Удовлетворительн
	контролировать правильность	Общие, но не структурированные знания
	вычислений; самостоятельно	основных понятий теории уравнений
	приобретать новые знания	математической физики. Демонстрирует
	ВЛАДЕТЬ: фундаментальным	частично сформированное умение
	понятийным аппаратом и	производить аналитические расчеты в
	методами решения задач для	стандартных постановках, давать
	уравнений математической	содержательную интерпретацию результатов
	физики; навыками	вычислений. Имеет представление о
	теоретического анализа	теоретическом и практическом анализе
	полученных результатов;	объектов, описываемых уравнениями
		математической физики.
		Хорошо
		Сформированные, но содержащие отдельные
		пробелы знания основных понятий теории
		уравнений математической физики. В целом
		успешные, но содержащие отдельные
		пробелы умения производить аналитические
		расчеты в стандартных постановках, давать
		содержательную интерпретацию результатов
		вычислений. Умеет контролировать
		правильность вычислений; самостоятельно
		приобретать новые знания. Владеет
		основным понятийным аппаратом теории
		уравнений математической физики.
	I	

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		Сформированные систематические знания основных понятий теории уравнений математической физики. Сформированы умения производить аналитические расчеты в стандартных постановках,
		давать содержательную интерпретацию результатов вычислений, контролировать правильность вычислений; самостоятельно приобретать новые знания.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 47 до 60

«неудовлетворительно» / «незачтено» менее 47 балла

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
Входной контроль	Входной контроль	Знать основные понятия и теоремы
	Входное тестирование	курсов высшей алгебры, аналитической
	_	геометрии, математического анализа и
		дифференциальных уравнений. Уметь
		применять их для аналитических
		вычислений, доказательств утверждений
		и теорем, решения задач.
ОПК.1.2	Текущий контроль 1	Знать характеристики и уравнения
Применяет фундаментальные	Письменное контрольное	физических процессов, постановку
знания в области математики	мероприятие	начальных и граничных условий, общие
для решения прикладных задач		свойства линейных уравнений, метод
		приведения уравнения к каноническому
		виду. Уметь сформулировать задачу,
		определить тип уравнения и условий,
		преобразовать уравнение к
		каноническому виду, решить начальную
		задачу, провести графическую
		интерпретацию результатов

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
`	· -	
ОПК.1.2	Текущий контроль 2	Знать понятие собственных функций,
Применяет фундаментальные	Письменное контрольное	разложения в ряд Фурье, разделения
знания в области математики	мероприятие	переменных. Уметь сформулировать
для решения прикладных задач		смешанную задачу, задачу на
		собственные значения, вычислить
		коэффициенты ряда Фурье, получить
		решение смешанной задачи, представить
		полученное решение в графическом виде
		и проверить его согласование с данными
		задачи.
ОПК.1.2	Текущий контроль 3	Знать основные утверждения теории
Применяет фундаментальные	Письменное контрольное	эллиптических уравнений, понятия
знания в области математики	мероприятие	корректности внутренней и внешней
для решения прикладных задач		краевых задач, методы решения задач.
		Уметь сформулировать краевую задачу,
		получить решение, представить
		графическую интерпретацию
		физической задачи.
ОПК.1.2	Итоговый контроль	Знать виды, типы уравнений,
Применяет фундаментальные	Итоговое контрольное	формулировки основных задач, свойства
знания в области математики	мероприятие	решений, примеры физических
для решения прикладных задач		процессов, основные утверждения
		теории гиперболических и
		эллиптических уравнений, понятия
		корректности краевых задач, методы
		решения задач. Уметь доказывать
		основные утверждения теории
		осповные утверждения теории

Спецификация мероприятий текущего контроля

Входной контроль

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 0

Проходной балл: 0

Показатели оценивания	Баллы
Знает основные утверждения и теоремы курса дифференциальных уравнений. Умеет	40
применять их для решения задач	
Знает основные утверждения и теоремы курса математического анализа . Умеет применять	30
их для решения задач	
Знает основные утверждения и теоремы курса высшей алгебры. Умеет применять их для	20
решения задач	

Знает основные утверждения и теоремы курса аналитической геометрии. Умеет применять	10
их для решения задач	

Текущий контроль 1

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 35

Проходной балл: 15

Показатели оценивания	Баллы
Знает методы решения начальной задачи. Умеет решить начальную задачу, провести	15
графическую интерпретацию результатов	
Знает общие свойства линейных уравнений, метод приведения уравнения к каноническому	10
виду. Умеет преобразовать уравнение к каноническому виду, определить тип уравнения	
Знает характеристики и уравнения физических процессов, постановку начальных и	10
граничных условий. Умеет сформулировать задачу.	

Текущий контроль 2

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 15

Показатели оценивания	Баллы
Знает метод разделения переменных. Умеет сформулировать смешанную задачу для	10
гиперболических и параболических уравнений, получить решение.	
Знает физическую интерпретацию поставленной задачи. Умеет решить задачу и	10
представить полученное решение в графическом виде, проверить его согласование с	
данными задачи.	
Знает понятие собственных функций. Умеет сформулировать задачу на собственные	10
значения, вычислить коэффициенты ряда Фурье	

Текущий контроль 3

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы самостоятельной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 15

Проходной балл: 7

Показатели оценивания	Баллы
Знает свойства краевых задач для эллиптических уравнений. Умеет получить решение в	10
разных системах координат, представить полученное решение в графическом виде и	
проверить его согласование с данными задачи.	
Знать основные утверждения теории эллиптических уравнений, понятия корректности	5
внутренней и внешней краевых задач, методы решения задач. Умеет сформулировать	
краевую задачу, получить решение.	

Итоговый контроль

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	Баллы
Знает основные утверждения теории эллиптических уравнений, понятия корректности	10
внутренней и внешней краевых задач, примеры физических процессов, основные	
утверждения теории эллиптических уравнений. Умеет доказывать основные утверждения	
теории	
Знает виды, типы уравнений, формулировки основных задач, примеры физических	10
процессов, понятия корректности краевых задач. Умеет использовать теоретические	
результаты для обоснования правильности решения конкретной задачи	