МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра физики фазовых переходов

Авторы-составители: Петров Данил Александрович

Краузин Павел Васильевич

Захлевных Александр Николаевич Макаров Дмитрий Владимирович

Рабочая программа дисциплины

ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА

Код УМК 80993

Утверждено Протокол №12 от «14» мая 2020 г.

1. Наименование дисциплины

Термодинамика и статистическая физика

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 03.03.02 Физика

направленность Фундаментальная физика

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Термодинамика и статистическая физика** у обучающегося должны быть сформированы следующие компетенции:

03.03.02 Физика (направленность : Фундаментальная физика)

ОПК.7 способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач

ПК.1 способность использовать специализированные знания в области физики для освоения профильных физических дисциплин

4. Объем и содержание дисциплины

Направления подготовки	03.03.02 Физика (направленность: Фундаментальная физика)	
форма обучения	очная	
№№ триместров,	8	
выделенных для изучения		
дисциплины		
Объем дисциплины (з.е.)	6	
Объем дисциплины (ак.час.)	216	
Контактная работа с	84	
преподавателем (ак.час.),		
в том числе:		
Проведение лекционных	42	
занятий		
Проведение практических	42	
занятий, семинаров		
Проведение лабораторных	0	
работ, занятий по		
иностранному языку		
Самостоятельная работа	132	
(ак.час.)		
Формы текущего контроля	Входное тестирование (1)	
	Итоговое контрольное мероприятие (1)	
	Необъективируемое контрольное мероприятие (1)	
	Письменное контрольное мероприятие (3)	
Формы промежуточной	Экзамен (8 триместр)	
аттестации		

5. Аннотированное описание содержания разделов и тем дисциплины

Термодинамика и статистическая физика

Введение

Макроскопические системы. Статистическое описание состояний макроскопических систем. Функция распределения.

Квазинезависимые подсистемы. Условие статистической независимости.

Основы статистической термодинамики

Каноническое распределение. Статистическое обоснование равновесной термодинамики. Большое каноническое распределение. Начала термодинамики. Термодинамическое равновесие и устойчивость. Переход к классической статистике

Идеальные газы

Идеальные газы бесструктурных частиц. Статистики Бозе и Ферми. Статистика Максвелла-Больцмана. Атомарные и молекулярные газы

Термодинамические системы независимых осцилляторов

Термодинамика равновесного теплового излучения.

Термодинамика твердого тела

Классические неидеальные системы

Одноатомный неидеальный газ. Потенциальная энергия взаимодействия молекул. Метод Майера расчета конфигурационного интеграла. Уравнение состояния слабонеидеального газа . Формула Ван-дер-Ваальса.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Ландау, Л.Д. Курс теоретической физики. Статистическая физика: учебное пособие / Л.Д. Ландау, Е.М. Лифшиц. 5-е изд., стер. Москва: ФИЗМАТЛИТ, 2001. 616 с. ISBN 978-5-9221-0054-0. Текст: электронный // Лань: электронно-библиотечная система. https://elis.psu.ru/node/619858
- 2. Ефремов, Ю. С. Статистическая физика и термодинамика: учебное пособие для академического бакалавриата / Ю. С. Ефремов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 209 с. (Бакалавр. Академический курс). ISBN 978-5-534-05152-0. Текст: электронный // ЭБС Юрайт [сайт]. https://urait.ru/bcode/438850
- 3. Дмитриев, А. В. Основы статистической физики материалов : учебник / А. В. Дмитриев. Москва : Московский государственный университет имени М.В. Ломоносова, 2004. 672 с. ISBN 5-211-04830-X. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/13062
- 4. Ландау Л. Д.Теоретическая физика. учебное пособие для студентов физических специальностей университетов: в 10 т. Т. 5. Статистическая физика, Ч. 1/Л. Д. Ландау, Е. М. Лифшиц; ред. Л. П. Питаевский. Москва: ФИЗМАТЛИТ, 2005, ISBN 5-9221-0054-8.-616

Дополнительная:

1. Михнев Л. В. Термодинамика и статистическая физика:Практикум/Михнев Л. В..-Ставрополь:Северо-Кавказский федеральный университет,2016.-125. http://www.iprbookshop.ru/69442.html

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

https://lectoriy.mipt.ru/course/Physics-Thermodynamics-09L Лекторий МФТИ. Курс "Термодинамика и молекулярная физика"

https://www.youtube.com/watch?v=H1Zbp6__uNw&list=PLB72416C707D85AB0 Stanford University Channel on YouTube. Leonard Susskind. Lecture Collection: Modern Physics: Statistical Mechanics

https://ocw.mit.edu/courses/physics/8-333-statistical-mechanics-i-statistical-mechanics-of-particles-fall-2013/ MIT OpenCourseWare. Mehran Kardar. Statistical Mechanics I: Statistical Mechanics of Particles

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Термодинамика и статистическая физика** предполагает использование следующего программного обеспечения и информационных справочных систем:

- доступ в режиме on-line в Электронную библиотечную систему (ЭБС)
- доступ в электронную информационно-образовательной среду университета.
- Интернет-сервисы и электронные ресурсы (поисковые системы, электронная почта и т.д.)

Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения

- приложение, позволяющее просматривать PDF-файлы
- офисный пакет приложений «LibreOffice».

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных и практических занятий требуется аудитория, оснащенная меловой (и) или маркерной доской.

Для групповых (индивидуальных) консультаций и текущего контроля требуется аудитория, оснащенная меловой (и) или маркерной доской.

Для самостоятельной работы студентов требуется аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-образовательную среду университета. Помещения Научной библиотеки ПГНИУ

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Термодинамика и статистическая физика

Планируемые результаты обучения по дисциплине для формирования компетенции и критерии их оценивания

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
ОПК.7	Знать:	Неудовлетворител
способность	основные представления и	Не знает основные представления и понятия
использовать базовые	понятия термодинамики и	термодинамики и статистической физики;
теоретические знания	статистической физики; методы	методы количественного описания свойств
фундаментальных	количественного описания	идеальных и реальных газов.
разделов общей и	свойств идеальных и реальных	Не умеет проводить термодинамическое и
теоретической физики	газов;	статистическое описание равновесного
для решения	Уметь:	состояния макроскопических систем и
профессиональных	проводить термодинамическое	квазистатических процессов; применять
задач	и статистическое описание	квантовые статистики для описания свойств
	равновесного состояния	газов, состоящих из бозонов и фермионов.
	макроскопических систем и	Не владеет навыками расчёта
	квазистатических процессов;	макроскопических величин методами
	применять квантовые	квантовой статистической физики; навыками
	статистики для описания	качественного анализа поведения и свойств
	свойств газов, состоящих из	макроскопических систем; навыками
	бозонов и фермионов;	решения задач с использованием законов
	Владеть:	термодинамики; методами описания
	навыками расчёта	состояний идеальных и реальных газов.
	макроскопических величин	Удовлетворительн
	методами квантовой	Демонстрирует частично сформированное
	статистической физики;	знание основных представлений и понятий
	навыками качественного	термодинамики и статистической физики;
	анализа поведения и свойств	методов количественного описания свойств
	макроскопических систем;	идеальных и реальных газов.
	навыками решения задач с	Демонстрирует частично сформированное
	использованием законов	умение проводить термодинамическое и
	термодинамики; методами	статистическое описание равновесного
	описания состояний идеальных	состояния макроскопических систем и
	и реальных газов.	квазистатических процессов; применять
		квантовые статистики для описания свойств
		газов, состоящих из бозонов и фермионов.
		Демонстрирует частично сформированное
		владение навыками расчёта
		макроскопических величин методами
		квантовой статистической физики; навыками
		качественного анализа поведения и свойств

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Удовлетворительн
		макроскопических систем; навыками
		решения задач с использованием законов
		термодинамики; методами описания
		состояний идеальных и реальных газов.
		Хорошо
		Демонстрирует сформированное, но
		содержащее отдельные пробелы знание
		основных представлений и понятий
		термодинамики и статистической физики;
		методов количественного описания свойств
		идеальных и реальных газов.
		Демонстрирует сформированное, но
		содержащее отдельные пробелы умение
		проводить термодинамическое и
		статистическое описание равновесного
		состояния макроскопических систем и
		квазистатических процессов; применять
		квантовые статистики для описания свойств
		газов, состоящих из бозонов и фермионов.
		Демонстрирует сформированное, но
		содержащее отдельные пробелы владение
		навыками расчёта макроскопических
		величин методами квантовой статистической
		физики; навыками качественного анализа
		поведения и свойств макроскопических
		систем; навыками решения задач с
		использованием законов термодинамики;
		методами описания состояний идеальных и
		реальных газов.
		Отлично
		Знает основные представления и понятия
		термодинамики и статистической физики;
		методы количественного описания свойств
		идеальных и реальных газов.
		Умеет проводить термодинамическое и
		статистическое описание равновесного
		состояния макроскопических систем и
		квазистатических процессов; применять
		квантовые статистики для описания свойств
		газов, состоящих из бозонов и фермионов.
		Владеет навыками расчёта
		макроскопических величин методами
		квантовой статистической физики; навыками

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
ПК.1 способность использовать специализированные знания в области физики для освоения профильных физических дисциплин	Знать: основные положения термодинамики и статистической физики. Уметь: применять основные законы для описания макроскопических систем. Владеть: навыками качественного анализа поведения и свойств макроскопических систем.	Отлично качественного анализа поведения и свойств макроскопических систем; навыками решения задач с использованием законов термодинамики; методами описания состояний идеальных и реальных газов. Неудовлетворител Не знает основные положения термодинамики и статистической физики. Не умеет применять основные законы для описания макроскопических систем. Не владеет навыками качественного анализа поведения и свойств макроскопических систем. Удовлетворительн Демонстрирует частично сформированное знание основных положений термодинамики и статистической физики. Демонстрирует частично сформированное умение применять основные законы для описания макроскопических систем. Демонстрирует сформированное, но содержащее отдельные пробелы владение навыками качественного анализа поведения и свойств макроскопических систем. Хорошо Демонстрирует сформированное, но содержащее отдельные пробелы знание основных положений термодинамики и статистической физики. Демонстрирует сформированное, но содержащее отдельные пробелы умение применять основные законы для описания макроскопических систем. Демонстрирует сформированное, но содержащее отдельные пробелы владение навыками качественного анализа поведения и свойств макроскопических систем. Демонстрирует сформированное, но содержащее отдельные пробелы владение навыками качественного анализа поведения и свойств макроскопических систем. Отлично Знает основные положения термодинамики и статистической физики. Умеет применять основные законы для описания макроскопических систем. Владеет навыками качественного анализа поведения и свойств макроскопических систем. Владеет навыками качественного анализа поведения и свойств макроскопических систем. Владеет навыками качественного анализа поведения и свойств макроскопических систем.

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		систем.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 42 до 60

«неудовлетворительно» / «незачтено» менее 42 балла

Компетенция	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
Входной контроль	Введение Входное тестирование	Основы молекулярной физики, элементы теории вероятностей
ПК.1 способность использовать специализированные знания в области физики для освоения профильных физических дисциплин ОПК.7 способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач	Основы статистической термодинамики Письменное контрольное мероприятие	Каноническое распределение. Статистическое обоснование равновесной термодинамики. Большое каноническое распределение. Термодинамическое равновесие и устойчивость. Переход к классической статистике
ОПК.7 способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач	Основы статистической термодинамики Письменное контрольное мероприятие	Термодинамические потенциалы. Начала термодинамики. Методы преобразования термодинамических величин. Равновесные процессы.

Компетенция Мероприятие Контролируемые элемент		
	текущего контроля	результатов обучения
ОПК.7	Идеальные газы	Каноническое и большое каноническое
способность использовать	Письменное контрольное	распределения. Статистики
базовые теоретические знания	мероприятие	Максвелла-Больцмана, Ферми и Бозе.
фундаментальных разделов		Расчет статистических сумм и
общей и теоретической физики		интегралов. Вычисление
для решения профессиональных		термодинамических потенциалов,
задач		получение уравнений состояния
ОПК.7	Термодинамические	Домашние задачи по термодинамике и
способность использовать	системы независимых	статистической физике
базовые теоретические знания	осцилляторов	
фундаментальных разделов	Необъективируемое	
общей и теоретической физики	контрольное	
для решения профессиональных	мероприятие	
задач	YC	77
ОПК.7	Классические неидеальные	Идеальные газы бесструктурных частиц.
способность использовать	системы	Атомарные и молекулярные газы.
базовые теоретические знания	Итоговое контрольное	Термодинамика равновесного теплового
фундаментальных разделов общей и теоретической физики	мероприятие	излучения Термодинамика твердого тела.
для решения профессиональных		Одноатомный неидеальный газ.
задач		Потенциальная энергия взаимодействия
задач		молекул. Метод Майера расчета
		конфигурационного интеграла.
		Уравнение состояния
		слабонеидеального газа. Формула
		Ван-дер-Ваальса. Флуктуации основных
		термодинамических величин

Спецификация мероприятий текущего контроля

Введение

Продолжительность проведения мероприятия промежуточной аттестации: **1 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **0**

Проходной балл: 0

Показатели оценивания	
Решение каждого задания контрольного тестирования оценивается по следующей схеме:	6
верный ответ - 1 балл; неверный ответ - 0 баллов. Всего 6 заданий.	

Основы статистической термодинамики

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 15

Показатели оценивания	
Контрольная работа состоит из 16 вопросов.і) Вопросы с №1 по №15, требующие краткого	20
ответа (формула, определение и т.п.), оцениваются в 1 балл; іі) Вопрос №16, требующий	
развернутого ответа, оценивается в 5 баллов.	
Здесь указаны критерии получения первичных баллов за контрольное мероприятие.	0
Итоговые баллы в рейтинг по 100-балльной шкале рассчитывает ЕТИС согласно вкладу	
контрольного мероприятия (30%) в итоговую оценку.	

Основы статистической термодинамики

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 12

Проходной балл: 6

Показатели оценивания	
Задача 4. Начала термодинамики. Равновесные процессы.	2
Задача 3. Круговые процессы. КПД.	2
Задача 1. Термодинамические потенциалы. Метод якобиана.	1
Задача 2. Методы преобразования термодинамических величин.	1
Здесь указаны критерии получения первичных баллов за контрольное мероприятие. Итоговые баллы в рейтинг по 100-балльной шкале рассчитывает ЕТИС согласно вкладу	0
контрольного мероприятия (12%) в итоговую оценку.	

Идеальные газы

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **12**

Проходной балл: 6

Показатели оценивания	
Задача 1. Распределение Максвелла-Больцмана. Нахождение средних значений.	2
Задача 3. Статистический интеграл и расчет ТД величин.	2
Задача 2. Статистическая сумма и расчет ТД	2
величин.	
Здесь указаны критерии получения первичных баллов за контрольное мероприятие.	0
Итоговые баллы в рейтинг по 100-балльной шкале рассчитывает ЕТИС согласно вкладу	
контрольного мероприятия (12%) в итоговую оценку.	

Термодинамические системы независимых осцилляторов

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 16

Проходной балл: 0

Показатели оценивания	
Решение каждой домашней задачи оценивается по следующей схеме: верное решение - 1	25
балл; неверное решение - 0 баллов. Всего 25 задач.	
Здесь указаны критерии получения первичных баллов за контрольное мероприятие.	0
Итоговые баллы в рейтинг по 100-балльной шкале рассчитывает ЕТИС согласно вкладу	
контрольного мероприятия (16%) в итоговую оценку.	

Классические неидеальные системы

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 15

Показатели оценивания	Баллы
Контрольная работа состоит из 16 вопросов.і) Вопросы с №1 по №15, требующие краткого	20
ответа (формула, определение и т.п.), оцениваются в 1 балл; іі) Вопрос №16, требующий	
развернутого ответа, оценивается в 5 баллов.	
Здесь указаны критерии получения первичных баллов за контрольное мероприятие.	0
Итоговые баллы в рейтинг по 100-балльной шкале рассчитывает ЕТИС согласно вкладу	
контрольного мероприятия (30%) в итоговую оценку.	