МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра теоретической физики

Авторы-составители: Демин Виталий Анатольевич

Циберкин Кирилл Борисович

Рабочая программа дисциплины

ЭЛЕКТРОДИНАМИКА

Код УМК 80990

Утверждено Протокол №6 от «08» июня 2020 г.

1. Наименование дисциплины

Электродинамика

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 03.03.02 Физика

направленность Фундаментальная физика

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Электродинамика у обучающегося должны быть сформированы следующие компетенции:

03.03.02 Физика (направленность : Фундаментальная физика)

ОПК.7 способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач

ОПК.8 способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей

ПК.1 способность использовать специализированные знания в области физики для освоения профильных физических дисциплин

4. Объем и содержание дисциплины

Направления подготовки	03.03.02 Физика (направленность: Фундаментальная физика)		
форма обучения	очная		
№№ триместров,	7		
выделенных для изучения			
дисциплины			
Объем дисциплины (з.е.)	5		
Объем дисциплины (ак.час.)	180		
Контактная работа с	70		
преподавателем (ак.час.),			
в том числе:			
Проведение лекционных	42		
занятий			
Проведение практических	28		
занятий, семинаров			
Проведение лабораторных	0		
работ, занятий по			
иностранному языку			
Самостоятельная работа	110		
(ак.час.)			
Формы текущего контроля	Входное тестирование (1)		
	Итоговое контрольное мероприятие (1)		
	Письменное контрольное мероприятие (3)		
Формы промежуточной	Экзамен (7 триместр)		
аттестации			

5. Аннотированное описание содержания разделов и тем дисциплины

Электродинамика. Первый семестр

Введение

Основные этапы развития теории электромагнитного поля. Общий характер построения читаемого курса.

Элементы векторного и тензорного исчисления (краткая сводка основных формул и понятий). Скалярные, векторные и тензорные величины. Дифференциальные операции первого и второго порядков. Дифференциально-векторные тождества. Интегральные теоремы. Криволинейные системы координат.

Понятие напряженностей электрического и магнитного полей, плотностей тока и заряда. Сила Лоренца. Закон сохранения заряда

Электростатика

Уравнения электростатического поля. Скалярный потенциал. Уравнения Пуассона и Лапласа.

Граничные условия для потенциала на поверхностях проводников и диэлектриков.

Некоторые общие теоремы электростатики. Теорема единственности решения. Теорема о минимуме и максимуме потенциала. Теорема Ирншоу. Теорема взаимности. Классификация задач электростатики, прямые и обратные задачи.

Прямая задача электростатики для безграничной однородной среды. Функция Грина. Общее решение уравнения Пуассона. Потенциал простого и двойного слоя. Поле произвольной системы зарядов на большом расстоянии от нее. Разложение по мультиполям. Дипольный момент. Тензор квадрупольного момента

Методы решения прямой задачи при наличии проводников и неоднородных диэлектриков (краевые задачи).

Конструктивные методы: метод изображений; метод заполнения диэлектриком.

Метод разделения переменных. Разделение переменных в уравнении Лапласа в декартовой системе координат (иллюстрация метода). Задача о диэлектрическом шаре в однородном внешнем поле. Понятие о методе инверсии, методе конформных преобразований, методе возмущений. Дискретное описание электростатических систем. Линейные соотношения между зарядами и потенциалами проводников. Свойства потенциальных и емкостных коэффициентов. Понятие емкости.

Магнитостатика

Электростатические цепи.

Уравнения, описывающие магнитное поле постоянных токов. Векторный потенциал. Уравнение для векторного потенциала в однородной среде и его решение. Закон Био-Савара.

Поле произвольной системы токов на большом расстоянии от нее. Магнитный дипольный момент. Поле магнитного диполя.

Уравнения Максвелла и общие свойства э.м. полей

Уравнение Максвелла в дифференциальной и интегральной формах для полей, зарядов и токов в вакууме. Постулаты, связывающие э.м. явления с механическими. Пределы применимости уравнений классической электродинамики.

Важнейшие общие свойства уравнений Максвелла и их решений. Скаляры, векторы и псевдовекторы в уравнениях Максвелла. Линейность уравнений и принцип суперпозиции решений. Обратимость уравнений во времени. Принцип перестановочной двойственности и магнитные источники. Законы сохранения, следующие из уравнений Максвелла. Закон сохранения заряда (уравнение непрерывности). Закон сохранения энергии (теорема Пойнтинга). Вектор Пойнтинга и понятие потока э.м. энергии. Закон сохранения импульса. Понятие плотности э.м. импульса и тензора натяжений для

поля в вакууме.

Теорема единственности решения уравнений Максвелла при заданных начальных и граничных условиях.

Классификация основных типов э.м. явлений: электростатика, токостатика, магнитостатика, квазистационарные процессы, быстропеременные (волновые) поля.

Переменные электромагнитные поля; общее описание

Постановка задачи и различные приближения. Описание переменного э.м. поля в общем случае. Дифференциальные уравнения второго порядка для э.м. полей. Описание с помощью потенциалов. Градиентная инвариантность. Условие калибровки Лоренца. Волновые уравнения для потенциалов. Вектор Герца. Магнитные потенциалы.

Гармонические процессы. Комплексная запись полей и уравнений Максвелла. Комплексная диэлектрическая проницаемость. Связь комплексных полей с потенциалами. Возможность оперирования с произведением комплексных векторов. Комплексная теорема Пойнтинга. Функция Грина и общее решение неоднородного волнового уравнения. Представление потенциалов в виде интегралов по области источников. Условие излучения.

Простейшая излучающая система - элементарный электрический вибратор (диполь Герца). Общее выражение для поля излучения, структура поля в квазистатической и волновой зонах. Диаграмма направленности; сопротивление излучения. Поле магнитного диполя (с использованием принципа двойственности).

Общее представление поля излучения произвольной системы заданных гармонических токов в дальней зоне. Вектор излучения как пространственная Фурье-гармоника плотности тока. Основные характеристики направленности излучающей системы.

Потенциалы Лиенара - Вихерта

Излучение движущегося заряда. Радиационное торможение.

Специальная теория относительности

Принцип относительности. Экспериментальные обоснования специальной теории относительности. Независимость скорости света от движения источника. Преобразования Лоренца для координат и времени. Интервал.

Релятивистская кинематика. Закон сложения скоростей. Преобразование промежутков времени, длин и углов.

Релятивистское обобщение уравнений механики Ньютона. Уравнение движения релятивистской заряженной частицы во внешнем электромагнитном поле.

Законы преобразования энергии и импульса. Связь энергии, импульса, массы и скорости релятивистской частицы.

Принцип стационарного действия в электродинамике.

Уравнения движения релятивистской заряженной частицы во внешнем электромагнитном поле в форме Лагранжа.

Четырехмерный формализм Минковского.

Ковариантная запись закона сохранения заряда. Законы преобразования плотностей заряда и тока.

Ковариантная запись калибровочного условия Лоренца и уравнений для потенциалов. Закон преобразования потенциалов.

Тензор электромагнитного поля. Ковариантная запись уравнений Максвелла для полей в вакууме.

Законы преобразования напряженностей поля. Инварианты электромагнитного поля.

Инвариантность фазы. Законы преобразования частоты и волнового вектора электромагнитной волны. Астрономическая аберрация и эффект Доплера.

Излучение быстро движущегося заряда.

Функция Лагранжа для электромагнитного поля при заданных зарядах и токах. Получение уравнений Максвелла из принципа стационарного действия.

Тензор энергии-импульса электромагнитного поля. Ковариантная запись законов сохранения.

Плотность энергии, импульса и момента импульса электромагнитного поля.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Электродинамика. Специальная теория относительности. Теория электромагнитного поля: учебнометодическое пособие / составители Е. А. Памятных. Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2014. 72 с. ISBN 978-5-7996-1105-7. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/68416.html
- 2. Ландау Л. Д.Теоретическая физика. учебное пособие для студентов физических специальностей университетов: в 10 т. Т. 8.Электродинамика сплошных сред/Л. Д. Ландау, Е. М. Лифшиц; ред. Л. П. Питаевский. Москва: ФИЗМАТЛИТ, 2005, ISBN 5-9221-0123-4.-656
- 3. Боков, Л. А. Электродинамика и распространение радиоволн: учебное пособие / Л. А. Боков, В. А. Замотринский, А. Е. Мандель. Томск: Томский государственный университет систем управления и радиоэлектроники, 2013. 410 с. ISBN 978-5-86889-578-4. Текст: электронный // Электроннобиблиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/72050.html

Дополнительная:

- 1. Иродов И. Е. Основные законы электромагнетизма: учебное пособие для вузов/И. Е. Иродов.-Москва:Высшая школа, 1991, ISBN 5-06-002062-2.-287.
- 2. Лобов Н. И., Любимов Д. В. Электродинамика сплошных сред: учебно-методическое пособие/Н. И. Лобов, Д. В. Любимов.-Пермь, 2012, ISBN 978-5-7944-1889-7, 2-е изд., стер..-1. https://elis.psu.ru/node/25313
- 3. Любимов Д. В. Электродинамика. Электромагнитное поле в вакууме:учебное пособие/Д. В. Любимов.-Пермь.2007. ISBN 5-7944-0811-1.-91.

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://library.psu.ru/node/738 Электронные ресурсы научной библиотеки ПГНИУ https://elis.psu.ru/ Электронная мультимедийная библиотека ELiS

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине Электродинамика предполагает использование следующего программного обеспечения и информационных справочных систем:

- доступ в режиме on-line в Электронную библиотечную систему (ЭБС)
- доступ в электронную информационно-образовательной среду университета.
- Интернет-сервисы и электронные ресурсы (поисковые системы, электронная почта и т.д.)

Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения:

- приложение, позволяющее просматривать PDF-файлы
- офисный пакет приложений «LibreOffice».

Дополнительный перечень используемых информационных технологий определяется преподавателями дисциплины.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения практических занятий - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для групповых (индивидуальных) консультаций - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения текущего контроля - аудитория, оснащенная меловой (и) или маркерной доской. Самостоятельная работа студентов: аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-

образовательную среду университета, помещения Научной библиотеки ПГНИУ

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Электродинамика

Планируемые результаты обучения по дисциплине для формирования компетенции и критерии их оценивания

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
ОПК.7	Знать: основные уравнения и	Неудовлетворител
способность	законы электростатики,	Не знает основные уравнения и законы
использовать базовые	уравнения, описывающие	электростатики, уравнения, описывающие
теоретические знания	магнитное поле постоянных	магнитное поле постоянных токов, закон
фундаментальных	токов, закон Био-Савара.	Био-Савара. Не умеет вычислять
разделов общей и	Уметь: вычислять	электрические поля зарядов и их
теоретической физики	электрические поля зарядов и	систем, находить поле произвольной системы
для решения	их систем, находить поле	токов на большом расстоянии от нее. Не
профессиональных	произвольной системы токов на	владеет методами теории потенциала,
задач	большом расстоянии от нее.	навыками нахождения поля магнитного
	Владеть: методами теории	диполя.
	потенциала, навыками	Удовлетворительн
	нахождения поля магнитного	Общие, но не структурированные знания
	диполя	основных уравнений и законов
		электростатики, уравнений, описывающие
		магнитное поле постоянных токов, закона
		Био-Савара. Демонстрирует частично
		сформированное умение производить
		расчёты, давать интерпретацию результатов.
		Имеет представление о методах теории
		потенциала, приемах нахождения поля
		магнитного диполя.
		Хорошо
		Сформированные, но содержащие отдельные
		пробелы знания основных уравнений и
		законов электростатики, уравнений,
		описывающие магнитное поле постоянных
		токов, закона Био-Савара. В целом
		успешные, но содержащие отдельные
		пробелы умения производить расчёты,
		давать интерпретацию результатов,
		контролировать правильность вычислений,
		самостоятельно приобретать новые знания. В
		целом успешно, но с отдельными пробелами
		владеет методы теории потенциала.
		Отлично
		Сформированные систематические знания

профессиональных задач и интерпретацию результатов. Имеет интерпретировать представление о понятиях и методах электродинамики движущихся тел с учетом границ применимости моделей Сформированные, но содержащие отдельные пробелы знания основ СТО и описания динамики тел на околосветовых скоростях. В целом успешные, но содержащие отдельные пробелы умения применять преобразования Лоренца, давать интерпретацию результатов, контролировать правильность вычислений,	Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
ПОПК.8 Способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать с учетом границ применимости моделей применимости моделей в неговарения применимости моделей преобразования преобразования пробразования в преобразования применимости применимости применимости применимости применимости применимости применимости применимости применимости преобразования преобразования преобразования преобразования преобразования преобразования пробразования преобразования прео			основных уравнений и законов электростатики, уравнений, описывающие магнитное поле постоянных токов, закона Био-Савара. Сформированное умение вычислять электрические поля зарядов и их систем. Успешное и систематическое применение навыков методов теории потенциала, приемов нахождения поля
методов электродинамики движущихся тел	способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ	динамики тел на околосветовых скоростях Уметь: применять преобразования Лоренца. Владеть: понятиями и методами электродинамики движущихся	Не знает основы СТО и описания динамики тел на околосветовых скоростях. Не умеет применять преобразования Лоренца. Не владеет понятиями и методами электродинамики движущихся тел Удовлетворительн Общие, но не структурированные знания основ СТО и описания динамики тел на околосветовых скоростях. Демонстрирует частично сформированное умение применять преобразования Лоренца, давать интерпретацию результатов. Имеет представление о понятиях и методах электродинамики движущихся тел Хорошо Сформированные, но содержащие отдельные пробелы знания основ СТО и описания динамики тел на околосветовых скоростях. В целом успешные, но содержащие отдельные пробелы умения применять преобразования Лоренца, давать интерпретацию результатов, контролировать правильность вычислений, самостоятельно приобретать новые знания. В целом успешно, но с отдельными пробелами владеет понятиями и методами электродинамики движущихся тел Отлично Сформированные систематические знания основ СТО и описания динамики тел на околосветовых скоростях. Сформированное умение применять преобразования Лоренца.
	ПК.1	Знать: методы расчёта систем	методов электродинамики движущихся тел

Компетенция	Пиомируем не ресультату и	Unwanny ayayynayya naayyy tatan
компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
	ооучения	ооучения
способность	зарядов и токов, линий,	Неудовлетворител
использовать	электромагнитных волн в	Не знает методы расчёта систем зарядов и
специализированные	пространстве и веществе.	токов, линий, электромагнитных волн в
знания в области	Уметь: вычислять	пространстве и веществе. Не умеет
физики для освоения	распределения зарядов, токов и	вычислять распределения зарядов, токов и
профильных	полей, описывать	полей, описывать распространение,
физических дисциплин	распространение, отражение и	отражение и преломление электромагнитных
	преломление электромагнитных	волн. Не владеет приемами расчета линий
	волн. Владеть: приемами	передачи, распространения
	расчета линий передачи,	электромагнитных волн.
	распространения	Удовлетворительн
	электромагнитных волн.	Общие, но не структурированные знания
		методов расчёта систем зарядов и токов,
		линий, электромагнитных волн в
		пространстве и веществе. Демонстрирует
		частично сформированное умение вычислять
		распределения зарядов, токов и полей,
		описывать распространение, отражение и
		преломление электромагнитных волн. Имеет
		представление о приемах расчета линий
		передачи, распространения
		электромагнитных волн.
		Хорошо
		Сформированные, но содержащие отдельные
		пробелы знания методов расчёта систем зарядов и токов, линий, электромагнитных
		волн в пространстве и веществе. В целом
		<u> </u>
		успешные, но содержащие отдельные
		пробелы умения вычислять распределения
		зарядов, токов и полей, описывать
		распространение, отражение и преломление
		электромагнитных волн. В целом успешно, но с отдельными пробелами владеет:
		приемами расчета линий передачи,
		распространения электромагнитных волн.
		распространения электромагнитных волн. Отлично
		Сформированные систематические знания
		методы расчёта систем зарядов и токов,
		линий, электромагнитных волн в
		пространстве и веществе. Сформированное
		умение вычислять распределения зарядов,
		токов и полей, описывать распространение,
		отражение и преломление электромагнитных
		волн. Успешное и систематическое
		применение навыков расчета линий
		применение навыков расчета линии

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		передачи, распространения
		электромагнитных волн.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100

«хорошо» - от 61 до 80

«удовлетворительно» - от 44 до 60

«неудовлетворительно» / «незачтено» менее 44 балла

Компетенция	Мероприятие	Контролируемые элементы
	текущего контроля	результатов обучения
Входной контроль	Введение	Основы электромагнетизма и
	Входное тестирование	векторного анализа
ОПК.7	Электростатика	знание закона Кулона, владение теорией
способность использовать	Письменное контрольное	потенциала
базовые теоретические знания	мероприятие	
фундаментальных разделов		
общей и теоретической физики		
для решения профессиональных		
задач		
ОПК.7	Магнитостатика	Знание закона Био-Савара, умение
способность использовать	Письменное контрольное	находить магнитные поля систем
базовые теоретические знания	мероприятие	постоянных токов
фундаментальных разделов		
общей и теоретической физики		
для решения профессиональных		
задач		
ПК.1	Переменные	Знание уравнений электромагнитных
способность использовать	электромагнитные поля;	волн, уравнений Максвелла, владение
специализированные знания в	общее описание	методами нахождения полей
области физики для освоения	Письменное контрольное	движущихся источников.
профильных физических дисциплин	мероприятие	

Компетенция	Мероприятие	Контролируемые элементы
	текущего контроля	результатов обучения
ОПК.8	Специальная теория	Знание основ СТО, умение описывать
способность использовать в	относительности	динамику тел и систем на
профессиональной деятельности	Итоговое контрольное	околосветовых скоростях
базовые знания	мероприятие	
фундаментальных разделов		
математики, создавать		
математические модели типовых		
профессиональных задач и		
интерпретировать полученные		
результаты с учетом границ		
применимости моделей		

Спецификация мероприятий текущего контроля

Введение

Продолжительность проведения мероприятия промежуточной аттестации: **.5 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **0** Проходной балл: **0**

Показатели оценивания	Баллы
Дифференцирование векторов: градиент, дивергенция, ротор	4
Закон Кулона, поле электрического диполя, Закон Био-Савара-Лапласа	
Преобразование векторных произведений	2
Индексная форма записи	1

Электростатика

Продолжительность проведения мероприятия промежуточной аттестации: **1 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **25**

Проходной балл: 11

Показатели оценивания	
знание закона Кулона	8
умение рассчитывать поля систем зарядов	
знание теории потенциала	6
владение методами расчета энергии электростатических полей	5

Магнитостатика

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 25

Проходной балл: 11

Показатели оценивания	Баллы
Знание закона Био-Савара	8
Умение рассчитывать поля систем стационарных токов	
Умение находить дипольный магнитный момент системы токов	
Умение вычислять энергию магнитных полей	5

Переменные электромагнитные поля; общее описание

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 25

Проходной балл: 11

Показатели оценивания	
Знание уравнений Даламбера, уравнений Максвелла	6
Умение получать волновые уравнения, описывать распространение электромагнитных	6
волн в различных средах	
Умение рассчитывать поля систем движущихся зарядов	5
Умение находить интенсивности излучения электромагнитных волн	4
Владение навыками расчёта потенциалов движущихся зарядов, знание понятий	4
запаздывающего потенциала, потенциалов Лиенара-Вихерта.	

Специальная теория относительности

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 25

Проходной балл: 11

Показатели оценивания	
Умение описывать сокращение длины, замедление времени, эффект Доплера	7
Владение основными методами описания систем зарядов, движущихся с околосветовыми скоростями	7
Знание основных концепций специальной теории относительности	6
Умение применять релятивистскую формулу сложения скоростей	5