МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра теоретической физики

Авторы-составители: Циберкин Кирилл Борисович

Марышев Борис Сергеевич Демин Виталий Анатольевич

Рабочая программа дисциплины

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПОДЗЕМНОЙ ГИДРОДИНАМИКИ

Код УМК 88194

Утверждено Протокол №6 от «08» июня 2020 г.

1. Наименование дисциплины

Методы решения задач подземной гидродинамики

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 03.03.02 Физика

направленность Фундаментальная физика

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Методы решения задач подземной гидродинамики у обучающегося должны быть сформированы следующие компетенции:

03.03.02 Физика (направленность : Фундаментальная физика)

ОПК.3 способность находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительных систем **ПК.1** способность использовать специализированные знания в области физики для освоения профильных физических дисциплин

4. Объем и содержание дисциплины

Направления подготовки	03.03.02 Физика (направленность: Фундаментальная физика)		
форма обучения	очная		
№№ триместров,	11		
выделенных для изучения			
дисциплины			
Объем дисциплины (з.е.)	4		
Объем дисциплины (ак.час.)	144		
Контактная работа с	42		
преподавателем (ак.час.),			
в том числе:			
Проведение лекционных	14		
занятий			
Проведение лабораторных	28		
работ, занятий по			
иностранному языку			
Самостоятельная работа	102		
(ак.час.)			
Формы текущего контроля	Итоговое контрольное мероприятие (1)		
	Письменное контрольное мероприятие (2)		
Формы промежуточной	Экзамен (11 триместр)		
аттестации			

5. Аннотированное описание содержания разделов и тем дисциплины

Методы решения задач подземной гидродинамики. Первый семестр

Свойства и характеристики пористой среды

Пористая среда. Природа пористой среды. Пористость. Аналитическая теория пористой среды. Укладка шаров. Классификация пород. Их свойства по накоплению жидкостей. Залегание и миграция подземных жидкостей. Залегание газа и нефти.

Модель Дарси

Закон Дарси. Степень обоснованности модели. Проницаемость пористой среды. Измерение и вычисление проницаемости. Измерения пористости. Основные гидродинамические соотношения. Обобщённая форма закона Дарси. Уравнения движения жидкости. Граничные и начальные условия. Аналогия с другими физическими задачками. Недекартовы системы координат.

Эксплуатация скважин

Радиальное и несимметричное течение в скважину. Круговой питающий контур. Линейный питающий контур. Метод отражений. Метод сопряжённых функций. Общая теория потенциала. Теорема Грина. Группы скважин. Линейные ряды. Ограниченные группы скважин. Коэффициент полезного действия скважин.

Расчёт характеристик гидротехнических сооружений

Обтекание гидротехнических сооружений. Задачи о противодавлении на плотину. Фильтрационный расход под плотинами. Обтекание сооружений со шпунтами. Фильтрация из каналов.

Задача о взаимном вытеснении жидкостей

Многокомпонентная фильтрация несмешивающихся жидкостей. Граница раздела. Граничные условия. Взаимное вытеснение жидкостей различных вязкостей. Плоскопараллельная задача. Плоскорадиальная задача. Неустойчивость фронта вытеснения.

Конвекция в пористой среде

Устойчивость равновесия неравномерно нагретой жидкости в пористой среде. Возникновение конвективного течения. Влияние граничных условий. Особенности задачи конвекции в пористой среде. Косимметрия.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Молокович, Ю. М. Неравновесная фильтрация и ее применение в нефтепромысловой практике / Ю. М. Молокович. Москва, Ижевск : Регулярная и хаотическая динамика, Институт компьютерных исследований, 2019. 218 с. ISBN 978-5-4344-0696-3. Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/91966.html
- 2. Ландау, Л.Д. Теоретическая физика: учебное пособие / Л.Д. Ландау, Е.М. Лифшиц. 5-е изд., стер.
- Москва : ФИЗМАТЛИТ, [б. г.]. Том 6 : Гидродинамика 2001. 736 с. ISBN 5-9221-0121-8.
- Текст : электронный // Лань : электронно-библиотечная система. https://elis.psu.ru/node/619860

Дополнительная:

- 1. Молокович, Ю. М. Неравновесная фильтрация и ее применение в нефтепромысловой практике / Ю. М. Молокович. Москва, Ижевск : Регулярная и хаотическая динамика, Институт компьютерных исследований, 2019. 218 с. ISBN 978-5-4344-0696-3. Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/91966.html
- 2. Квеско Б. Б. Основы геофизических методов исследования нефтяных и газовыхскважин:Учебное пособие/Квеско Б. Б..-Москва:Инфра-Инженерия,2018, ISBN 978-5-9729-0208-8.-228. http://www.iprbookshop.ru/78226.html
- 3. Мироненко В. А. Динамика подземных вод:учебник для студентов вузов, обучающихся по направлению "Геология и разведка полезных ископаемых", специальности "Поиск и разведка подземных вод и инженерно-геологические изыскания"/В. А. Мироненко.-Москва:Издательство Московского государственного горного университета, 2001, ISBN 5-7418-0110-2.-519.-Библиогр.: с. 506-509

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://library.psu.ru/node/738 Ресурсы Научной библиотеки ПГНИУ

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Методы решения задач подземной гидродинамики** предполагает использование следующего программного обеспечения и информационных справочных систем:

- доступ в режиме on-line в Электронную библиотечную систему (ЭБС)
- доступ в электронную информационно-образовательной среду университета.
- Интернет-сервисы и электронные ресурсы (поисковые системы, электронная почта и т.д.)

Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения:

- приложение, позволяющее просматривать PDF-файлы
- офисный пакет приложений «LibreOffice»
- пакет численного моделирования Octave;
- пакет аналитических вычислений Maxima

Дополнительный перечень используемых информационных технологий определяется преподавателями дисциплины.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения лабораторных работ - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и компьютерной техникой с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для групповых (индивидуальных) консультаций - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения текущего контроля - аудитория, оснащенная меловой (и) или маркерной доской.

Самостоятельная работа студентов: аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-образовательную среду университета, помещения Научной библиотеки ПГНИУ

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Методы решения задач подземной гидродинамики

Планируемые результаты обучения по дисциплине для формирования компетенции и критерии их оценивания

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
ПК.1	Знать базовые понятия теории	Неудовлетворител
способность	фильтрации жидкостей и газов	не знает базовых понятий теории
использовать	в пористых средах, основные	фильтрации жидкостей и газов в пористых
специализированные	принципы и понятия теории	средах, основных принципов и понятий
знания в области	конвективных течений в	теории конвективных течений в пористой
физики для освоения	пористой среде; уметь	среде; не умеет производить расчёты
профильных	производить расчёты	характеристик сред и течений, исследовать
физических дисциплин	характеристик сред и течений,	задачи конвективной устойчивости
	исследовать задачи	механического равновесия жидкостей в
	конвективной устойчивости	неизотермической пористой среде; не
	механического равновесия	владеет базовыми понятиями и методами
	жидкостей в неизотермической	теории фильтрации, теории конвективной
	пористой среде; владеть	устойчивости жидкостей и газов в пористой
	базовыми понятиями и	среде.
	методами теории фильтрации и	Удовлетворительн
	теории конвективной	Общие, но не структурированные знания
	устойчивости жидкостей и	основ теории фильтрации, принципов и
	газов в пористой среде.	понятий теории конвективных течений в
		пористой среде. Демонстрирует частично
		сформированное умение исследовать задачи
		конвективной устойчивости механического
		равновесия жидкостей в неизотермической
		пористой среде, производить расчёты, давать
		интерпретацию результатов. Имеет
		представление о теоретическом анализе
		фильтрационных течений, принципах теории
		конвективной устойчивости жидкостей и
		газов в пористой среде.
		Хорошо
		Сформированные, но содержащие отдельные
		пробелы знания основ теории фильтрации,
		принципов и понятий теории конвективных
		течений в пористой среде. В целом
		успешные, но содержащие отдельные
		пробелы умения исследовать задачи
		конвективной устойчивости механического
		равновесия жидкостей в неизотермической

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Хорошо пористой среде, производить расчёты, давать интерпретацию результатов, контролировать правильность вычислений, самостоятельно приобретать новые знания. Владеет основным понятийным аппаратом теории фильтрации, теории конвективной устойчивости жидкостей и газов в пористой среде, но с отдельными пробелами. Отлично Сформированные систематические знания основ теории фильтрации, принципов и
		понятий теории конвективных течений в пористой среде. Сформированное умение производить расчёты скоростей и давлений, параметров сред, исследовать задачи конвективной устойчивости механического равновесия жидкостей в неизотермической пористой среде. Успешное и систематическое применение навыков теоретического анализа движения жидкостей и газов в пористой среде, конвективной устойчивости жидкостей и газов в пористой
ОПК.3 способность находить,	Знать основные законы многофазной фильтрации и	среде. Неудовлетворител Не знает законы многофазной фильтрации и
анализировать, реализовывать программно и	многофазной фильтрации и движения несмешивающихся жидкостей в пористой среде, принципы расчёта	движения несмешивающихся жидкостей в пористой среде, принципы расчёта гидротехнических сооружений. Не умеет
использовать на практике математические алгоритмы, в том числе с применением	гидротехнических сооружений. Уметь производить расчёты многофазных течений, обтекания гидротехнических сооружений. Владеть	производить расчёты многофазных течений, обтекания гидротехнических сооружений. Не владеет понятийным аппаратом теории многофазной фильтрации и навыками расчёта гидротехнических сооружений.
современных вычислительных систем	понятийным аппаратом теории многофазной фильтрации и навыками расчёта гидротехнических сооружений.	Удовлетворительн Общие, но не структурированные знания законов многофазной фильтрации и принципов расчёта гидротехнических сооружений. Демонстрирует частично
		сформированное умение производить расчёты, давать интерпретацию результатов. Имеет представление об основных понятиях теории многофазной фильтрации и расчёта гидротехнических сооружений.
		Хорошо

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Хорошо
		Сформированные, но содержащие отдельные
		пробелы знания законов многофазной
		фильтрации и принципов расчёта
		гидротехнических сооружений В целом
		успешные, но содержащие отдельные
		пробелы умения производить расчёты,
		давать интерпретацию результатов,
		контролировать правильность вычислений,
		самостоятельно приобретать новые знания.
		Владеет основным понятийным аппаратом
		теории многофазной фильтрации и расчёта
		гидротехнических сооружений, но с
		отдельными пробелами.
		Отлично
		Сформированные систематические знания
		знания законов многофазной фильтрации и
		принципов расчёта гидротехнических
		сооружений. Сформированное умение
		производить расчёты, давать интерпретацию
		результатов, контролировать правильность
		вычислений, самостоятельно приобретать
		новые знания. Успешное и систематическое
		применение навыков расчёта многофазных
		течений, расчёта гидротехнических
		сооружений

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 50 до 60

«неудовлетворительно» / «незачтено» менее 50 балла

Компетенция	Мероприятие	Контролируемые элементы
Trommer eman	текущего контроля	результатов обучения
ПК.1	Эксплуатация скважин	базовые понятия теории фильтрации
способность использовать	Письменное контрольное	жидкостей и газов в пористых средах;
специализированные знания в	мероприятие	пористость, проницаемость, закон
области физики для освоения		Дарси, закон Дарси-Форхгеймера,
профильных физических		модель Бринкмана; течения к скважинам
дисциплин		и системам скважин.
ОПК.3	Задача о взаимном	Основные законы многофазной
способность находить,	вытеснении жидкостей	фильтрации, движения
анализировать, реализовывать	Письменное контрольное	несмешивающихся жидкостей в
программно и использовать на	мероприятие	пористой среде, задачи о вытеснении;
практике математические		принципы расчёта гидротехнических
алгоритмы, в том числе с		сооружений, фильтрации под
применением современных		плотинами, шпунтами
вычислительных систем		, 3
ПК.1	Конвекция в пористой	Конвекция жидкостей в пористой среде;
способность использовать	среде	механическое равновесие жидкостей в
специализированные знания в	Итоговое контрольное	неизотермической пористой среде и его
области физики для освоения	мероприятие	устойчивость; косимметрия.
профильных физических	_	-
дисциплин		

Спецификация мероприятий текущего контроля

Эксплуатация скважин

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 15

Показатели оценивания	Баллы
Знает закон Дарси, понятия пористости и проницаемости, умеет находить их для	5
модельных грунтов.	
Умеет оценивать пределы применимости закона Дарси в средах с различными свойствами.	5
Умеет находить поля скорости, давления, в системах с заданными свойствами среды и	5
граничными условиями.	
Владеет навыками расчёта течений к единичным скважинам, к системам скважин.	5
Владеет навыками расчёта режимов скважин, имеет представление о гидравлических	5
испытаниях скважин.	
Знает расширения закона Дарси, критерии их применения, умеет производить	5
соответствующие оценки.	

Задача о взаимном вытеснении жидкостей

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 15

Показатели оценивания	Баллы
Знает основные методы, владеет принципами расчёта обтекания гидротехнических	5
сооружений.	
Умеет производить расчёт давления на плотину, потока под плотиной.	5
Владеет навыками исследования задачи о неустойчивости фронта вытеснения	5
Знает основные принципы теории многокомпонентной фильтрации смешивающихся и	5
несмешивающихся жидкостей.	
Умеет решать задачи о взаимном вытеснение жидкостей различных вязкостей, ставить	5
условия на границе раздела.	
Знает основные методы расчёта сооружений со шпунтами, фильтрации из каналов.	5

Конвекция в пористой среде

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 20

Показатели оценивания	Баллы
Владеет навыками анализа условий возникновения конвективного течения и развития	10
течения.	
Имеет представление о явлении косимметрии.	10
Имеет представление о влиянии граничных условий на устойчивость равновесия и	10
динамику конвективных течений.	
Знает основные принципы теории конвективной устойчивости. Умеет определять условия	10
равновесия жидкостей и газов в неизотермической пористой среде с различными	
параметрами.	