МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермский государственный национальный исследовательский университет»

Колледж профессионального образования

ОРГАНИЧЕСКАЯ ХИМИЯ

методические рекомендации

для самостоятельной работы по изучению дисциплины для студентов Колледжа профессионального образования специальности 09.02.03 Программирование в компьютерных системах

Утверждено на заседании ПЦК общеобразовательных и гуманитарных дисциплин Протокол № 9 от «10» мая 2017г. председатель ______И.В. Власова

Составители:

Тетерина Надежда Михайловна, кандидат химических наук доцент, преподаватель Колледжа профессионального образования ПГНИУ

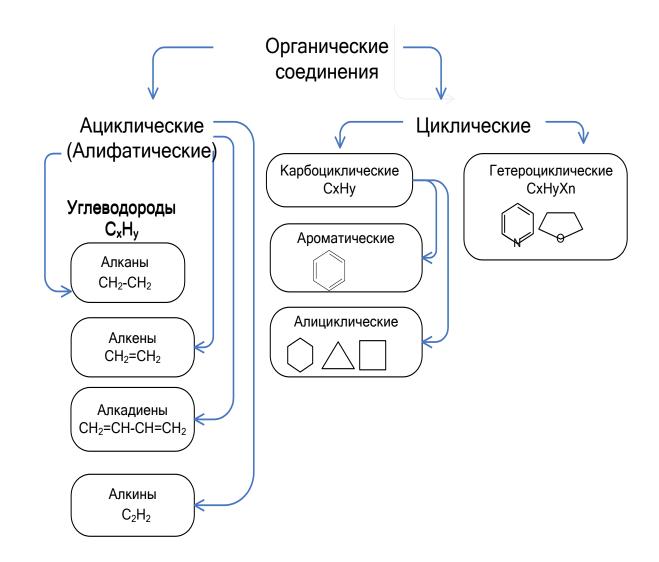
Органическая химия: методические рекомендации для самостоятельной работы по изучению дисциплины для студентов Колледжа профессионального образования специальности 09.02.03 Программирование в компьютерных системах / сост. Н.М. Тетерина; Колледж проф. образ. ПГНИУ. – Пермь, 2017. – 55 с.

Методические рекомендации «Органическая химия» разработаны на требований Федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.03 Программирование в компьютерных системах для оказания помощи студентам специальности 09.02.03 Программирование в компьютерных дисциплине «Химия». Содержат системах перечень ПО самостоятельных работ ПО дисциплине «Химия», методические рекомендации по их выполнению.

Предназначены для студентов Колледжа профессионального образования ПГНИУ специальности 09.02.03 Программирование в компьютерных системах (СПО) всех форм обучения.

Глава 1. Органические вещества: строение, классификация, номенклатура

Органические вещества — это вещества, **обязательно** содержащие **углерод**, а также другие химические элементы (H, N, P, O и др.). Они разделяются на:


- природные синтезируются в живых организмах (например, витамин C в овощах и фруктах, лимонная кислота в лимоне и т. д.);
- синтетические получаются человеком в результате целенапрвленного синтеза из природных органических и неорганических веществ (например, при переработке нефти).

Теория строения органических веществ обобщена и сформулирована **А. М. Бутлеровым** в 1861 году. Основные положения теории строения:

- 1. Атомы в молекулах органических веществ соединяются согласно их валентности (углерод-IV, водород-I, кислород-II...); атомы углерода способны соединятся в открытые цепи, циклы, а также образовывать между собой одинарные, двойные и тройные связи.
- 2. Свойства вещества определяются не только количественным и качественным составом, но и порядком соединения атомов в его молекуле (химическим строением). Данное положение объясняет явление изомерии.
- 3. Атомы и группы атомов в органических веществах взаимно влияют друг на друга.

Все органические соединения классифицируются в зависимости от структуры углеводородного скелета на ацикличкские и циклические (табл. 1).

Классификация органических соединений по строению углеводородного скелета

Ациклические соединения — соединения с открытой углеводородной цепью.

Циклические соединения – соединения с замкнутой углеводородной цепью.

Карбоциклические соединения – соединения, содержащие замкнутый цикл, состоящий только из атомов углерода.

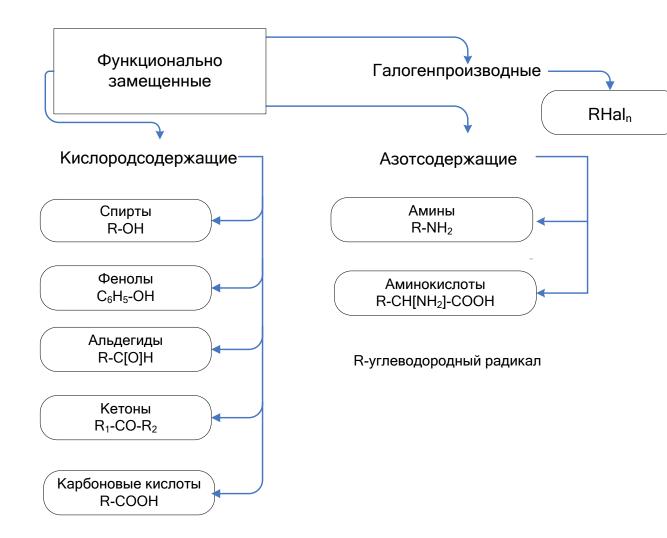
Ароматические соединения – бензол и углеводороды бензольного ряда, которые являются продуктами замещения атомов водорода в

бензольном ядре на углеводородные заместители (алкильные, алкенильные и др.).

Гетероциклические соединения — соединения, содержащие замкнутый цикл, включающий атомы углерода и другие атомы (O, S, N).

При систематизации органические соединения делят на классы в соответствии с тем, какие функциональные группы имеются в молекулах

Функционально замещенные соединения — производные углеводородов, в которых один или несколько атомов водорода замещены на функциональную группу ($\Phi\Gamma$).


Функциональная группа — атом или группа атомов, показывающая принадлежность вещества к определенному классу и определяющая характерные свойства данного класса веществ.

Многие органические вещества отличаются сложным строением, включают в состав их молекул несколько как одинаковых, так и разных $\Phi\Gamma$.

Если в состав молекул входят несколько одинаковых $\Phi\Gamma$, то такие соединения называются **полифункциональными** — например, этиленгликоль, глицерин.

Если в состав молекул входят несколько разных $\Phi\Gamma$, то такие соединения называются **гетерофункциональными** — например, углеводы (альдегидо- и кетоноспирты), аминокислоты.

Классификация органических соединений по функциональным группам

Основные типы номенклатуры органических соединений

Номенклатура представляет собой систему правил, позволяющих дать однозначное название каждому индивидуальному соединению. Существует несколько номенклатур.

Тривиальная (историческая) номенклатура органических соединений чаще всего связана с названием материала, из которого они были впервые выделены, или с именем ученого, впервые их изучившего. Например: C_2H_5OH – винный спирт (выделен из вина), HCOOH – муравьиная кислота.

Рациональная (радикальная) номенклатура возникла в XIX веке. При использовании рациональной номенклатуры название органических соединений строятся:

Примеры: СН₃-СН₂-СН₂-СН₂-ОН Бутиловый спирт

Примечание: приставка «изо-» применима для соединений, имеющих одно разветвление (на втором от начала цепи атоме углерода) и образование двух метильных групп.

Систематическая или номенклатура IUPAC

Название молекулы органического соединения состоит из нескольких частей:

Общее название по систематической номенклатуре составляют по схеме:

Префикс	Корень		Суффикс
Все заместители в	Определяет	+ степень	Старшая
едином алфавитном	название главной	насыщенно-	функциональная
порядке (кроме	ациклической или	сти: -ан, -ен,	группа
старшей группы)	циклической цепи	-ИН	

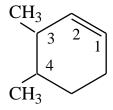
Локанты — цифры или буквы, показывающие положение углеводородной или функциональной группы, а также кратных связей. В русской номенклатурной практике принято ставить цифры, указывающие положение префиксов перед ними, а указывающие положение суффиксов, характер связей — после них.

Умножающие префиксы указывают число одинаковых структурных элементов в формуле. Например: «ди» - два, «три»- три, «тетра»- четыре, «пента»- пять, «гекса»- шесть и.т.д.

Построение названия органического соединения состоит из нескольких этапов: 1. Выбирают главную обычно длинную цепь, содержащую:

- старшую функциональную группу
- двойную или тройную связи,
- -максимальное число заместителей.
- 2. Главную цепь нумеруют с того конца, к которому ближе старшая функциональная группа, двойная или тройная связь, заместители.
- 3. В префиксе (приставке) в едином алфавитном порядке перечисляют заместители (табл.3) с учетом умножающих префиксов и с указанием их местоположения.
- 4. Дают название главной цепи (корень названия) с учетом степени насыщенности:- **ан** для насыщенной углеводородной цепи
 - ен при наличии двойной связи,
 - ин при наличии тройной связи
 - 5. В суффиксе дают название старшей функциональной группе(табл.
- 3). Она определяет класс органического соединения.

Таблица
Порядок старшинства классов органических соединений и названий характеристических групп


Класс	Функциональная	Название групп	
	группа	в префиксах	в суффиксах
Карбоновые к-ты	- COOH	-	карбоновая кислота
Альдегиды	-СНО	оксо	аль
Кетоны	-C=O	оксо	ОН
Спирты	-ОН	гидрокси	ол

Амины	$-NH_2$	амино	амин
Галогенпроизводные	-F	фтор	-
	-Cl	хлор	-
	-Br	бром	-
	-I	йод	-

Примеры упражнений

Упражнение №1. Дать названи соединению

туре

- 1. Определяют главную углеводородную цепь. Она имеет циклическое строение.
- 2. Нумеруют атомы углерода цепи, начиная с двойной связи, так, чтобы заместители получили наименьшие номера.
- 3. Перечисляют заместители в префиксе с указанием местоположения (для нескольких одинаковых заместителей указывают умножающий префикс).
- 4. Корень названия циклогексен с учетом степени насыщенности, после указывают локант двойной связи.

Название соединения 3,4-диметилциклогексен-1

Упражнение №2. Дать название по систематической номенклатуре соединению

$$\begin{array}{c} \operatorname{NH_2} \\ \operatorname{CH_3-CH-CH-COOH} \\ \operatorname{CH_3} \end{array}$$

- 1. Из двух функциональных групп старшей является карбоксильная группа (-COOH). Ее называют в суффиксе: **овая** кислота.
- 2. Нумеруют атомы углерода цепи от старшей функциональной группы.
- 3. В префиксе перечисляют заместители в алфавитном порядке с указанием местоположения.
- 4. Поскольку в главной цепи четыре атома углерода, корень названия бутан с учетом степени насыщенности.

Название соединения 2-амино-3-метилбутановая кислота.

Упражнение №3. Написать структурную формулу соединения **3,3**диметилгексен-1

- 1. Изображают углеводородные атомы главной цепи по названию корня.
- 2. Нумеруют цепь углеводородных атомов.
- 3. Располагают заместители и двойную связь в соответствии со значением локантов.
- 4. Завершают структуру молекулы, добавляя атомы водорода к углеводородным атомам цепи, имеющим свободные связи.

Глава 2. Углеводороды

Классификация химических реакции

1. **Реакции замещения** - обозначают **S** от анг. Substitution (замена атома или группы атомов)

 $A-B+C \Leftrightarrow A-C+B$, где A-B-cyбctpat - вещество, которое подвергается воздействию. Содержит атом углерода, у которого происходит разрыв связи и образование новой. C- реагент - вещество, действующее на субстрат.

2. **Реакции присоединения** - обозначают **A** от анг. Addition (разрыв π связей и введение атомов)

$$>$$
 C = C $<$ +A-B \rightarrow $>$ CA-CB $<$, где A - B- реагент

3. Реакции отщепления (элиминирования) обозначают Е от анг. Elimination .

$$> CA - CB < \rightarrow > C = C < +A - B$$

Реакции окисления - это реакции взаимодействия молекул субстрата с **окисляющими реагентами**, при этом происходит процесс присоединения кислорода или другого электроотрицательного элемента или отщепления водорода.

Реакции восстановления — это процесс, обратный окислению. Под действием **восстанавливающего реагента** исходное вещество присоединяет атом водорода или теряет атомы кислорода. Окисляющие и восстанавливающие реагенты условно обозначаются в схемах органических символами **[O]** и **[H]**.

[O]
$$CH_3COH \rightarrow CH_3COOH$$

Крекинг, пиролиз – процесс термического разложения без доступа воздуха. Как правило, при этом изменяют давление или проводят процесс в присутствии катализатора.

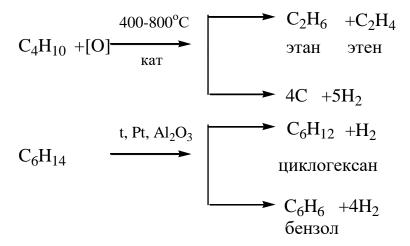
$$CH_4 \xrightarrow{1000^{0}C} C + 2H_2 \uparrow$$
, $2CH_4 \xrightarrow{> 1500^{0}C} C_2H_2 + 3H_2 \uparrow$ Алканы

Алканы образованы неполярными и малополярными связями, поэтому на них не действуют полярные кислоты и щелочи (при обычных условиях). Алканы растворимы в органических растворителях («подобное в подобном»).

Химические свойства

Для алканов характерны реакции замещения S, разложения (пиролиза, крекинга), изомеризации, окисления.

Реакции **замещения** (S_R) используются для получения нитро-, сульфо- (алкилсульфонаты R-CH₂-CH₂-SO₃Na - моющие средства) и галогеналканов (фреоны-CFH₃, CF₂H₂ и др.; растворители – CH₂Cl-CH₂Cl и др ; пестициды – CH₂Br₂, C₂Cl₆).


Издавна алканы используются в качестве источника энергии — в результате реакции горения (полного окисления) выделяется большое количество тепла: $CH_4 + O_2 \longrightarrow CO_2 + H_2O + Q$

Благодаря каталитическому окислению (неполному окислению) получают кислородсодержащие органические соединения:

$$C_2H_6+[O]$$
 $\xrightarrow{t, p, \text{ кат}}$ C_2H_5OH этанол CH_3COH этановая кислота

При термическом разложении и каталитическом дегидрировании (крекинге, пиролизе) получают другие классы углеводородов: циклоалканы, алкены, арены:

$$C_4H_{10} \xrightarrow{\text{t. N1}} CH_2 = CH_2 - CH_2 - CH_3 + H_2$$

бутен

Важное значение имеют реакции изомеризации, например, для получения бензина с высоким октановым числом:

$$H_3$$
С -CH₂-CH₂-CH₃ $\xrightarrow{t, \, \text{кат}}$ $\xrightarrow{CH_3}$ $\xrightarrow{CH_3}$

Непредельные углеводороды: алкены, алкадиены

Молекулы **алкенов** характеризуются наличием одной двойной связи. Атомы углерода при двойной связи: σ и π -связью. Прочность π -связи меньше, чем σ -связи, поэтому для алкенов характерны реакции, идущие с разрывом π -связи, т. е характерны реакции присоединения:

гидрирование (присоединения водорода под действием катализаторов - Ni и температуры), галогенирование (присоединение галогенов: $F_2 > Cl_2 > Br_2 > I_2$), гидрогалогенирование (присоединение галогеноводородов : HF < HCl < HBr < HI), гидратация (присоединение воды).

Присоединение к нессиметричным алкенам полярных реагентов воды, галогеноводородов, серной кислоты и других молекул идет по правилу Марковникова — водород направляется по месту разрыва π -связи к наиболее гидрированному атому углерода:

 H_3C -CH=CH₂+ HCl \rightarrow H_3C -CHCl-CH₃ (см. влияние электронных эффектов заместителей с. 34)

Присоединение молекул может происходить вопреки правилу Марковникова под действием электроноакцепторных заместителей.

Возможность протекания реакций присоединения привела к развитию химии высокомолекулярных соединений.

Полимеризация — реакция последовательного присоединения молекул с кратной связью, приводящая к получению высокомолекулярного соединения:

Полимеры — высокомолекулярные органические соединения, молекулы которых имеют большую молекулярную массу, достигающую иногда нескольких миллионов. Полимер представляет собой смесь макромолекул с различной молекулярной массой. Поэтому для полимеров используется понятие «средняя молекулярная масса».

Например, для полиэтилена $M_{r cp}$ –(-CH₂ –CH₂-)_n– = 3 000 000

Мономер — исходное низкомолекулярное вещество, из которого синтезируют полимер.

Элементарное (структурное) звено — одинаковые, многократно повторяющиеся звенья в макромолекуле полимера.

Макромолекула – молекула полимера.

Степень полимеризации (n) – число элементарных звеньев в молекуле полимера.

макромолекула
$$nCH_2 = CH_2 \xrightarrow{p, t, \text{кат}} -(-CH_2 - CH_2 -) - n$$
 степень мономер структурное полимеризации звено

Для алкенов характерны также реакции окисления, отщепления.

Алкены, как и алканы, являются источником тепловой энергии, в результате **горения** выделяется большое количество тепла:

$$C_2H_4+3O_2 \longrightarrow 2CO_2+2H_2O+Q$$

Характерной особенностью химических свойств алкенов является их легкое **окисление**. Продукты окисления зависят от окислителя и условий окисления.

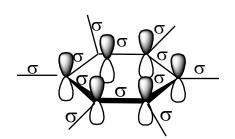
Реакцией отщепления (дегидрирования) из алкенов получают непредельные углеводороды других классов: алкины, алкадиены.

Например,
$$C_4H_8 \xrightarrow{Ni} C_4H_6 + H_2$$

Алкадиенами называют углеводороды, в молекулах которых содержатся две двойные связи.

Для алкадиенов наибольшее значение получили реакции полимеризации. Продуктами полимеризации диеновых углеводородов являются каучуки (эластомеры) имеющие высокие водоотталкивающие и эластичные свойства. Они получили применение в производстве одежды и обуви.

Х = Н дивиниловый (бутадиеновый) каучук


 $X = CH_3$ изопреновый каучук

X = Cl хлорпреновый каучук (обладает большей устойчивостью к износу, твердостью, поэтому из него производят детали машин и аппаратов).

При вулканизации – нагревании с порошком серы - получают резины, которые обладают высокой механической и термической прочностью.

Ароматические углеводороды (арены)

Важнейшим представителем ароматических углеводородов является

бензол C_6H_6 . Атомы углерода находятся при двойной связи. Это и обуславливает особые свойства этих углеводородов

Моноядерные арены. Бензол — первый член гомологического ряда. Так как второй представитель должен отличаться на CH₂, то второй представитель данного гомологического ряда - толуол (метилбензол)

Составление названия гомологов бензола:

- 1. Атомы углерода цикла нумеруют кратчайшим путем от более простого заместителя к более сложному.
- 2. Основа (корень)- слово бензо.

Первые члены гомологического ряда — жидкости, нерастворимые в воде, но хорошо растворимые в органических растворителях.

Бензол является ценным сырьем для получения гомологов бензола: **толуола** (производство бензойной кислоты в пищевой и фармацевтической промышленности), **этилбензола** (производство пластмасс, например, полистирола). Производные бензола: **анилин** (производство красителей), **фенол** (производство формальдегидных смол, моющие средства, средства защиты растений).

Для аренов характерны реакции **замещения** (S): галогенирование, нитрование, сульфирование, алкилирование, **свободнорадикального присоединения** A_R : гидрирование, галогенирование (под действием света);

Реакции замещения:

а) галогенирование (под действием катализаторов: $FeCl_3$, $ZnCl_2$, $AlCl_3$, которые поляризуют молекулу галогена)

б) нитрование (под действием катализатора - H_2SO_4)

$$H$$
 - σ + σ H_2SO_4 конц. + H_2O нитробензол

в) сульфирование

г) алкилирование (под действием катализаторов AlCl₃, H₂SO₄)

д) ацилирование (под действием катализатора AlCl₃)

$$H$$
 + σ О AlCl₃, t + C₂H₅-C фенилэтилкетон

КОНТРОЛЬНОЕ ЗАДАНИЕ №1

Вариант1.

- а) Напишите реакции замещения: этана и хлора
- б) Напишите реакцию присоединения: этена и хлороводорода
- в) Напишите реакции полимеризации бутадиен-1,3. Что такое полимеры? Какие свойства проявляют полимеры? Где они используются? Вариант2.
 - а) Напишите реакции замещения: пропана и фтора
 - б)Напишите реакцию присоединения: пропена и воды
- в) Напишите реакции полимеризации пропена. Что такое полимеры? Какие свойства проявляют полимеры? Где они используются?

Вариант3.

- а) Напишите реакции замещения: бутана и хлора
- б) Напишите реакцию присоединения: пропена и водорода
- в) Напишите реакции полимеризации бутен-2. Что такое полимеры? Какие свойства проявляют полимеры? Где они используются?

Вариант4.

- а) Напишите реакции замещения: гексана и хлора
- б) Напишите реакцию присоединения: бутена и хлора
- в) Напишите реакции полимеризации пентадиена-1,3. Что такое полимеры? Какие свойства проявляют полимеры? Где они используются?

Вариант5.

- а) Напишите реакции замещения: бензола и хлора
- б) Напишите реакцию присоединения: пропена и хлороводорода

в) Напишите реакции полимеризации 2-хлорпропена. Что такое полимеры? Какие свойства проявляют полимеры? Где они используются?

Вариант6.

- а) Напишите реакции замещения: метана и брома
- б) Напишите реакцию присоединения: бутена и хлороводорода
- в) Напишите реакции полимеризации хлорбутен-2. Что такое полимеры? Какие свойства проявляют полимеры? Где они используются?
- Вариант 7. a) Напишите реакции схемы превращений: этан—хлорэтан—этен
 - б) Изопропиловый каучук. Получение Свойства. Применение.
- Вариант 8. a) Напишите реакции схемы превращений: этан—этен—этанол
 - б) Поливинилхлорид. Получение Свойства. Применение.
- Вариант 9.a) Напишите реакции схемы превращений: пропен +водород—?+хлор—?
 - б) Полиамид. Получение Свойства. Применение.
- - б) Политетрафторэтилен. Получение Свойства. Применение.

Глава З.Кислородсодержащие органические соединения: спирты, альдегиды, карбоновые кислоты.

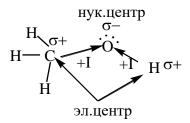
Спирты – это кислородсодержащие производные углеводородов, молекулы которых содержат одну или несколько гидроксильных функциональных групп - OH.

По международной номенклатуре основой названия спирта служит название соответствующего углеводорода, к которому добавляется суффикс ол: C₂H₅OH-этанол (табл. 5).

Вместе с тем для названий спиртов простого строения используют рациональную номенклатуру. Название спирта производят от названия углеводородного радикала, связанного с гидроксильной группой и добавляют слово спирт, например СН₃ОН - метиловый спирт. Некоторые спирты более привычно называют по тривиальной номенклатуре.

Таблица

Классификация спиртов


По типу	По числу	По типу атома углерода,
углеводородного	гидроксильных групп	связанного с группой -
радикала		ОН
Предельные	Одноатомные	Первичные
пропанол-2	пропанол-1	бутанол-1
(изопропиловый спирт)		
Непредельные	Двухатомные	Вторичные
пропен-2-ол-1	этандиол-1,2	бутанол-2 (вторичный
(аллиловый спирт)	(этиленгликоль)	бутиловый спирт)
Ароматические	Трехатомные	Третичные
Фенилметанол	пропантриол-1,2,3	2 метилпропанол-2
(бензиловый спирт)	(глицерин)	(трет. бутиловый спирт)

Многоатомные	
Гексангексаол-	
1,2,3,4,5,6 (сорбит)	

Особенности строения и электронные эффекты

Для понимания химических и физических свойств спиртов необходимо знание электронного и пространственного строения функциональной гидроксильной группы. В молекулах предельных одноатомных спиртов связь O-H гидроксогруппе поляризована (из-за разности электроотрицательности кислорода и водорода), поэтому атом водорода замещаться, например, на атом металла. Таким образом, гетеролитический разрыв связи О-Н определяет кислотность спиртов (способность к отщеплению атома водорода).

Однако, связь **C-O** также поляризована, поэтому спирты вступают в реакции с разрывом **C-O** связи. Например, гидроксильная группа спиртов может быть заменена на галоген или аминогруппу (заместитель содержащий электроотрицательный элемент), т.е. спирты вступают в реакцию замещения.

При определенных условиях для спиртов характерны также реакции отщепления и окисления.

Физические свойства. В результате полярности гидроксильной группы между молекулами спирта возникают особые межмолекулярные связи, называемые водородными:

Наличие водородных связей приводит к тому, что все молекулы спиртов сильно ассоциированы, поэтому в гомологических рядах спиртов нет газообразных веществ. Спирты, содержащие C_1 - C_{12} атомов - жидкости, а больше C_{12} - твердые вещества. Вследствие наличия межмолекулярных связей простейшие спирты – метанол, этанол- имеют сравнительно высокие температуры кипения (65 и 78 0 C), а фенол - твердое вещество.

Первые представители спиртов (C_1-C_3) хорошо растворимы в воде. Однако по мере увеличения углеводородного радикала гидрофобность молекул возрастает, поэтому растворимость спирта в воде понижается, но в тоже время повышается растворимость в липидах (маслах).

Некоторые представители спиртов. Метанол СН₃ОН — это сильнейший яд. Уже в небольших дозах (10 мл) вызывает слепоту. Этанол широко используется в промышленности, например в производстве синтетического каучука, а также входит в состав красок, лаков в качестве растворителя. Этиловый спирт обладает выраженными дезинфицирующими свойствами, поэтому его применяют в медицине и фармакологии (для производства лекарств). Большое количество этанола используется в ликероводочной промышленности для производства спиртных напитков. Его получают брожением растворов углеводов (например, глюкозы) под действием ферментов. Этанол обладает наркологическим действием. Его длительное и неумеренное употребление приводит к алкоголизму.

Химические свойства одноатомных спиртов

1. **Кислотные свойства** слабо выражены, спирты взаимодействуют только с активными металлами: $2C_2H_5OH+2Na\rightarrow 2C_2H_5ONa+H_2$

 C_2H_5ON а подвергается необратимому гидролизу:

$$C_2H_5ONa+H_2O \rightarrow C_2H_5OH +NaOH$$
,

поэтому спирты со щелочами не взаимодействуют.

2. **Реакции замещения**: спирты в качестве субстрата вступают в реакции замещения с галогеноводородами: бромоводородом, хлороводородом (эта реакция обратима, поэтому её проводят в присутствии серной кислоты)

$$CH_3$$
- CH_2 - CH_2 - OH + H - Br $\xrightarrow{H_2SO_4}$ CH_3 - CH_2 - CH_2 - Br + H_2O

3. Реакция этерификации- реакции с карбоновыми кислотами

4. Реакции отщепления

а) внутримолекулярная дегидратация ($t > 140^{\circ}$ C в присутствии конц. серной кислоты)

$$\begin{array}{c|c} OH & & \\ & | & \\ CH_3\text{-CH-C-CH}_3 & & \\ & | & | & \\ CH_3\text{-CH}_3 & & CH_3\text{-C} = \text{C-CH}_3\text{+ H}_2\text{O} \\ & | & | & \\ CH_3\text{-CH}_3 & & CH_3\text{-CH}_3 \\ \end{array}$$

б) межмолекулярная дегидратация (t $<140^{\circ}$ C в присутствии конц. серной кислоты)

CH₃-CH₂-OH + HO-CH₂-CH₃
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
, t CH₃-CH₂-O-CH₂-CH₃ + H₂O

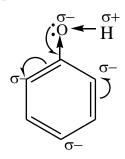
5. Реакция окисления

- а) **горение** $C_2H_5OH+O_2 \rightarrow 2CO_2 + 3H_2O + 1370$ кДж\моль
- б) Окисление сильными окислителями (K₂Cr₂O₇, KMnO₄):

$$5CH_3-CH_2-OH+2KMnO_4+3H_2SO_4 \longrightarrow 5CH_3-COH+2MnSO_4+K_2SO_4+8H_2O$$

$$[O] \qquad \qquad \downarrow \qquad [O]$$

$$CH_3-COOH$$


Многоатомные спирты

Этиленгликоль (двухатомный спирт). Сильный яд. Растворы этого вещества имеют низкую температуру замерзания, поэтому он используется при изготовлении антифризов. Антифризы — это охлаждающие жидкости, применяемые для отвода теплоты в двигателях внутреннего сгорания в зимних условиях.

Глицерин (трехатомный спирт) - обладает гигроскопичными свойствами, поэтому широко используется в парфюмерии (в кремах, помадах); пищевой промышленности (входит в состав жиров), в производстве пластмасс (в качестве пластификатора).

Многоатомные спирты: **сорбит (E420)** - $C_6H_6(OH)_6$, **ксилит (E967)** - $C_6H_7(OH)_5$, **маннит (E421)** - $C_6H_6(OH)_6$ изомер сорбита обычно используют в качестве подсластителей и заменителей сахара. Сорбит окисляется в организме до фруктозы, поэтому используется при приготовлении диетических плодоовощных консервов, кондитерских изделий, и безалкогольных напитков, а также входит в состав жевательных резинок. Ксилит применяется вместо сахара в производстве изделий для больных диабетом и ожирением. Он быстро усваивается и не оказывает влияния на уровень сахара в крови.

Фенолы — это кислородсодержащие производные ароматических углеводородов, у которых одна или несколько гидроксильных групп связаны непосредственно с бензольным ядром.

Реакции по бензольному кольцу: галогенирование, сульфирование, нитрование (см. арены)

$$OH$$
 OH Br Br $+ 3HBr$ $2,4,6$ -трибромфенол

Кислотные свойства (разрыв O - H). Фенол в отличие от алифатических спиртов проявляет более сильные кислотные свойства (реагирует не только с активными металлами, но и с щелочами):

$$2C_6H_5OH + 2Na \longrightarrow 2C_6H_5ONa + H_2$$

 $C_6H_5OH + NaOH \longrightarrow C_6H_5ONa + H_2O$

Качественная реакция на фенол:

$$C_6H_5OH + FeCl_3 \longrightarrow (C_6H_5O)_3Fe + 3HCl$$
 Фиолетовое окрашивание

Производные фенола проявили себя антиокислители как соединения, проявляющие сильные восстановительные свойства И препятствующие окислению веществ. Они вводятся в пищевые продукты для продления сроков их хранения. Антиокислители прерывают реакцию самоокисления компонентов продуктов питания, протекающую при контакте пищевых продуктов с кислородом воздуха.

Наиболее распространенными антиокслителями фенольного типа являются соединения:

$$(CH_{3})_{3}C \qquad OH \qquad (CH_{3})_{3}C \qquad (CH_{3}$$

бутилоксианизол бутилокситолуол 2,6-дитрет-бутил-4-метоксифенол 2,6-дитрет-бутил-4-метилфенол

Эти антиокислители используют для замедления окисления животных топленых жиров, соленого шпика, жевательных резинок.

Альдегиды, кетоны, их производные

Альдегиды — кислородсодержащие органические вещества, молекулы которых содержат альдегидную группу -C > 0

Названия альдегидов обычно связывают с названиями кислот, в которые они переходят при окислении. По систематической номенклатуре ЮПАК название альдегидов определяется названием главной углеводородной цепи с добавлением суффикса -аль.

Альдегиды классифицируют по природе углеводородной цепи на алифатические и ароматические.

Кетоны – кислородсодержащие органические вещества, молекулы которых содержат карбонильную группу (–C=O), соединенную с двумя углеводородными группами.

По систематической номенклатуре ЮПАК название кетонов определяется названием главной углеводородной цепи с добавлением суффикса -он и с указанием положения карбонильной группы в цепи. Для

кетонов простейшего строения более распространена рациональная номенклатура, в соответствии с которой в названии указывают два радикала, связанные с карбонильной группой, и добавляют слово кетон.

$$CH_3$$
 - CH_2 - C - CH_2 - CH_3

В соединениях со старшей группой кетоновая группа получает префикс - оксо

$$H_3C$$
 - C - CH_2 - C OH 3-оксобутановая кислота

Особенности строения и электронные эффекты

Для понимания химических и физических свойств альдегидов (кетонов) необходимо знание электронного строения карбонильной группы. Электронное облако двойной связи карбонильной группы $\mathbf{C}^{\delta +} = \mathbf{O}^{\delta -}$ смещено к более отрицательному атому кислорода, в результате чего он приобретает частично отрицательный заряд, атом углерода - частично положительный, Данные реакции протекают по следующей схеме:

$$R-C \stackrel{O}{\underset{H}{\stackrel{}{\swarrow}}} H \qquad + Nu \longrightarrow R \stackrel{O^{-}}{\underset{|}{\stackrel{}{\smile}}} H \qquad + H^{+} \longrightarrow R \stackrel{OH}{\underset{|}{\stackrel{}{\smile}}} R \stackrel{OH}{\underset{|}{\smile}} H$$

Nu – отрицательно заряженная частица

Физические свойства. Оксосоединения, имеющие до 8 атомов углерода в цепи — жидкости (кроме формальдегида (метаналь), который при нормальных условиях является газом); а от 8 до 13 атомов углерода — твердые вещества.

Простейшие представители альдегидов и кетонов, например, формальдегид, ацетальдегид, ацетон являются очень ядовитыми веществами с резким запахом. Карбонильные соединения, имеющие 8-12 атомов углерода в цепи — душистые жидкости.

Запах многих продуктов образуется сочетанием разнообразных химических соединений – ароматических углеводородов, сложных эфиров, альдегидов и кетонов.

Например, непредельный альдегид **цитраль** содержится в эфирных маслах лимона, эвкалипта, кориандра. Цитраль используется для приготовления кондитерских эссенций, парфюмерных отдушек и является важнейшим сырьем для синтеза витамина A.

Ароматический альдегид **ванилин** в настоящее время получают в результате химического синтеза. Его используют в производстве конфет, шоколада, булочек, безалкогольных напитков.

В качестве ароматизатора масел и маргарина используют коричный альдегид (содержится в корице).

$$CH_3$$
 CH_3 CH_3

Данные вещества применяют в пищевых продуктах в качестве **ароматизаторов.** В настоящее время ароматизирующие пищевые добавки подразделяют на следующие группы:

натуральные (выделенные из натурального сырья);

идентичные натуральным (полученные синтетическим путем);

искусственные ароматизаторы (полученные синтетическим путем и отсутствующие в натуральном сырье растительного и животного происхождения).

Химические свойства альдегидов и кетонов

Для оксо-соединений характерны реакции присоединения (A), окисления, восстановления.

Реакции присоединения (A_N):

- а) нуклеофильное **присоединение воды** (гидратация). Процесс обратим, так как гидратная форма
 - б) присоединение спиртов

$$CH_3$$
 - C H + HO - C_2H_5 H CH_3 - C - OC_2H_5 полуацеталь

Реакции окисления (качественные реакции на альдегидную группу):

$$CH_3$$
 - C + Ag_2O + 4 NH_4OH \rightarrow CH_3 - C O H + Ag_2O + 4 NH_4OH \rightarrow СН $_3$ - C О H серебряное зеркало

$$CH_3 - C + Cu(OH)_2$$
 аммиачн.p-p t $CH_3 - C + Cu_2OV + 2H_2O$ красный осадок

Реакции восстановления

[H] - восстановление водородом в присутствии катализаторов: Pt, Ni, Pd или сильными восстановителями, например – NaBH₄.

$$CH_3 - \overset{+1}{\underline{C}}_H^O \xrightarrow{[H]} CH_3 - \overset{-1}{\underline{C}}_{H_2-OH}$$

$$CH_3 \xrightarrow{\overset{+2}{\text{C}}} CH_3 \xrightarrow{[H]} CH_3 \xrightarrow{\overset{|H|}{\text{C}}} CH_3$$

$$O$$

$$O$$

$$OH$$

Карбоновые кислоты и их производные

Органические соединения, содержащие карбоксильную группу

общую формулу C_nH_{2n+1} СООН, называются предельным кислоты, ислоты, ислоты карбором ислоты и природы углеводородного радикала общую формулу C_nH_{2n+1} СООН, называются предельным кислотами.

Таблица 6 Отдельные одноосновные карбоновые кислоты, их названия

Формула	Тривиальное	Систематическое	Название аниона
	название	название	в солях
НСООН	Муравьиная	Метановая	Формиат
CH ₃ COOH	Уксусная	Этановая	Ацетат
CH ₂ =CH-COOH	Акриловая	Пропеновая	Акрилат
C ₁₅ H ₃₁ COOH	Пальмитиновая	Гексадекановая	Пальмитат
C ₁₇ H ₃₅ COOH	Стеариновая	Октадекановая	Стеарат
C ₆ H ₅ COOH	Бензойная	Бензолкарбоновая	Бензоат

Особенности строения карбоновых кислот и электронные эффекты

Карбоксильная группа представляет собой сочетание двух функциональных групп:

Такое строение определяет выраженные кислотные свойства

Однако карбоновые кислоты, кроме муравьиной кислоты, относят к слабым кислотам. Соли карбоновых кислот подвергаются гидролизу и имеют щелочную среду.

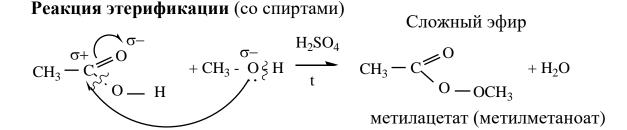
Физические свойства

Низшие предельные монокарбоновые кислоты (C_1 - C_9)-представляют собой жидкости, а высшие и ароматические — твердые вещества. Молекулы карбоновых кислот дифильны, т.е состоят из гидрофобной части (углеводородного радикала) и гидрофильного фрагмента (карбоксильной группы), поэтому с ростом углеводородного радикала растворимость кислот уменьшается (начиная с C_{10} — практически не растворимы). Соли карбоновых кислот также ограниченно растворимы.

Химические свойства:

Кислотные свойства

Наличием сильного положительного центра на атоме водорода в карбоксильной группе объясняется диссоциация низших карбоновых кислот (взаимодействие с водой): $R\text{-}COOH \Leftrightarrow RCOO^-\text{-}+H^+$


Растворы карбоновых кислот относят к слабым кислотам, поэтому они взаимодействуют:

- а) с активными металлами $2CH_3$ - $COOH+2K=2CH_3$ - $COOK+H_2$
- б) с оксидами металлов $2CH_3$ - $COOH+MgO = (CH_3COO)_2Mg+H_2O$

реакции замещения

в) с щелочами CH₃-COOH+ NaOH=CH₃COONa+H₂O
 г) с солями CH₃-COOH+ NaHCO₃= CH₃COONa+H₂O+CO₂

Образовавшиеся соли подвергаются гидролизу, поэтому смеси карбоновых кислот с их солями образуют буферные растворы.

Органические кислоты добавляют в пищевые продукты для придания им приятного кислого вкуса, а также для консервирования.

Консерванты – это вещества, которые добавляются в пищевые продукты для их сохранения, предотвращения порчи.

Уксусная кислота — наиболее распространенная консервирующая пищевая добавка (E260), применяемая в производстве маринованных изделий, овощных заготовок и консервов. Для получения пищевой уксусной кислоты используют уксуснокислое брожение спирта под действием бактерий (одноклеточные микроорганизмы):

$${
m CH_3-\!CH_2OH}$$
 ${
m O_2}$,ферменты бактерий ${
m CH_3COOH}$ + ${
m H_2O}$

Её действие основано на снижении рН консервированного продукта и направлено против болезнетворных (патогенных) бактерий. В промышленном масштабе уксусную кислоту производят путем окисления ацетальдегида, полученного из этилового спирта окисляющими реагентами или путем гидратации ацетилена по реакции Кучерова.

Муравьиная кислота (Е236) обладает также **антимикробным** действием. Её применяют для консервирования фруктовых соков, дезинфекции пищевых емкостей.

Пропионовая (пропановая) кислота (E280) обладает **антимикробным** действием. В пищевой промышленности используют главным образом натриевые и кальцевые соли пропионовой кислоты. Они применяются в сыроделии и хлебопечении.

Ароматические кислоты

Важнейшим представителем ароматических карбоновых кислот является **бензойная кислота** (Е210). Бензойная кислота входит в состав некоторых ягод (брусники, клюквы) и является распространенным природным консервантом. Ее применяют в органическом синтезе для получения лекарственных препаратов, душистых веществ, красителей. В пищевой промышленности в качестве консерванта используют ее соль — **бензоат натрия**.

Непредельные карбоновые кислоты

Ненасыщенные карбоновые кислоты содержат одну или несколько двойных или тройных связей.

 ${
m CH_2=\!CH\text{-}COOH}$ — пропеновая (акриловая) - используется в производстве пластмасс:

$$CH_3$$
 п $CH_2 = C - COOCH_3 \longrightarrow (-CH_2 - C -)_n$ полиметилметакрилат CH_3 соос CH_3 метиловый эфир метаакриловой кислоты

$$CH_3$$
 – CH = CH – CH = CH – $COOH$ – сорбиновая кислота (E200)

Сорбиновая кислота подавляет развитие микроорганизмов: дрожжей, плесневых грибов, некоторых бактерий (в том числе бактерий группы кишечной палочки). Она не обладает бактерицидным действием, а только замедляет развитие болезнетворных микроорганизмов, поэтому ее добавляют в гигиенически чистые продукты. Она не изменяет органолептических свойств (в отличие от пропионовой), не обладает токсичностью и не обнаруживает канцерогенных свойств. Сорбиновая

применяются в производстве сыров, молочных и кислота и её соли продуктов, хлебопечении, кисломолочных a также В производстве рыбных фруктовых, овощных, И мясных консервов, маргаринов, безалкогольных напитков, плодово-ягодных соков. Она может ингибировать работу ферментов у человека, поэтому её доза лимитирована.

Среди высших ненасыщенных кислот наиболее важными являются олеиновая - $C_{17}H_{33}COOH$ (двойная связь у C-9), линолевая - $C_{17}H_{31}COOH$ (две двойные связи C-9, C-12), линоленовая - $C_{17}H_{29}COOH$ (три двойные связи C-9, C-12, С-15). Линоленовая и линолевая кислоты не могут синтезироваться в организме и поступают только с растительными маслами. Свойства масел определяется составом жирных кислот, образующих эфирную связь с глицерином (табл. 7).

 Таблица

 Состав растительных масел

Масло	Содержание кислот, %		
	Олеиновая	Линолевая	Линоленовая
Оливковое	60-80	15	-
Подсолнечное	25-40	46-65	1
Кукурузное	44-45	41-48	-

Химические свойства. Ненасыщенные карбоновые кислоты вступают в реакции, характерные для **карбоксильной группы** и **для алкенов**:

- реакции, характеризующие кислотные свойства;
- реакции присоединения;
- реакции полимеризации;
- реакции окисления.

Производные карбоновых кислот- жиры,мыло

Животные и растительные жиры представляют собой сложные эфиры глицерина и высших карбоновых кислот (триглицериды). Жиры Растительные жиры, как правило, жидкие, их называют маслами(в состав

входят ненасыщенные высшие кислоты). Животные жиры по консистенциитведые (в состав входят насыщенные карбоновые кислоты)

Химические свойства

1. Гидролиз жиров (кислотный, т.е. в присутствии кислоты)

Дистеаролеат глицерина

2. Щелочной гидролиз (омыление)

Тристеарат глицерина

С₁₇Н₃₅СООН – мыло (моющее средство)

3. **Гидрирование жиров**. Реакции присоединения H_2 в присутствии катализатора. При этом жидкое масло превращается в твердый жир. Твердые растительные масла используют в пищевой промышленности для производства маргарина.

$$\begin{array}{c} \text{CH}_2\text{-O-C} \stackrel{\text{O}}{=} \text{CH}_2\text{-CH}_2\text{-CH}_3 \\ \text{CH-O-C} \stackrel{\text{O}}{=} \text{C}_{17}\text{H}_{35} \\ \text{CH}_2\text{-O-C} \stackrel{\text{O}}{=} \text{CH}_2\text{-CH}_2\text{-CH}_3 \\ \text{CH}_2\text{-O-C} \stackrel{\text{O}}{=} \text{(CH}_2)_7\text{-CH} = \text{CH} - (\text{CH}_2)_7 - \text{CH}_3 \\ \text{CH}_2\text{-O-C} \stackrel{\text{O}}{=} \text{(CH}_2)_7 - \text{CH} - \text{CH} - (\text{CH}_2)_7 - \text{CH}_3 \\ \text{CH-O-C} \stackrel{\text{O}}{=} \text{C}_{17}\text{H}_{35} \\ \text{CH}_2\text{-O-C} \stackrel{\text{O}}{=} \text{CH}_2\text{-CH}_3 \\ \text{OH OH} \end{array}$$

Данная реакция позволяет отличить маргарин от сливочного масла.

КОНТРОЛЬНОЕ ЗАДАНИЕ №2

Вариант1

- а) Определите класс указанных веществ. Приведите примеры химических взаимодействий для указанных веществ (напишите реакции по :a) функциональной группе; б)по углеводородному радикалу)
- Фенол, стеариновая кислота . Указать значение данных веществ в промышленности, медицине, сельском хозяйстве или в других сферах.
- б) Какие вещества относятся к консервантам? На чем основано их действие? Привести примеры.

Вариант2

- а) Определите класс указанных веществ. Приведите примеры химических взаимодействий для указанных веществ (напишите реакции по :a) функциональной группе; б)по углеводородному радикалу)
- Этаналь, олеиновая кислота. Указать значение данных веществ в промышленности, медицине, сельском хозяйстве или в других сферах.

в) Какую роль выполняют пищевые кислоты. Приведите примеры.

Вариант3

- а) Определите класс указанных веществ. Приведите примеры химических взаимодействий для указанных веществ (напишите реакции по :a) функциональной группе; б)по углеводородному радикалу)
- Метиловый спирт, пальметиновая кислота. Указать значение данных веществ в промышленности, медицине, сельском хозяйстве или в других сферах.
- б) Какие группы ароматизаторов используют в производстве продуктов питания. Охарактеризуйте каждую группу. Приведите известные примеры. Определите класс органического соединения

Вариант4

- а) Определите класс указанных веществ. Приведите примеры химических взаимодействий для указанных веществ (напишите реакции по :a) функциональной группе; б)по углеводородному радикалу)
- Глицерин, акриловая кислота. Указать значение данных веществ в промышленности, медицине, сельском хозяйстве или в других сферах.
- б) Как можно отличить растительные жиры от животных. Какие масла легче окисляются? Почему?

- а) Определите класс указанных веществ. Приведите примеры химических взаимодействий для указанных веществ (напишите реакции по :a) функциональной группе; б)по углеводородному радикалу)
- Метанол, бензойная кислота. Указать значение данных веществ в промышленности, медицине, сельском хозяйстве или в других сферах.
- б) Что такое эмульгатор? Для чего используют эмульгаторы в пищевой промышленности?

Вариант6

- а) Определите класс указанных веществ. Приведите примеры химических взаимодействий для указанных веществ (напишите реакции по :a) функциональной группе; б)по углеводородному радикалу)
- Метаналь(формальдегид), акриловая кислота. Указать значение данных веществ в промышленности, медицине, сельском хозяйстве или в других сферах.
- б) Почему мыло является ПАВ (поверхностно активным веществом) Представьте механизм моющего действия.

Вариант 7

- а) Закончите уравнения возможных реакций:а)гидроксид калия + этанол, б) акриловая кислота+ водород, в) уксусная кислоты +гидроксид натрия,г)пропанол +гидроксид натрия, д)олеиновая кислота+водород
- б) Жиры. Приведите схему получения жиров. Какие виды жиров существуют. Чем они отличаются.

Вариант8

- а) С каким из перечисленных ниже веществ будет взаимодействовать: а) фенол б) олеиновая кислота: азотная кислота, гидроксид калия, водород, натрий, бром. Напишите уравнения соответствующих реакций.
- б) Как распознать триолеатглицерина и тристеоратглицерина: а)физическим свойствам,

б)химическим свойствам

- а) С каким из перечисленных ниже веществ будет взаимодействовать: а) акриловая кислота б) этиленгликоль (этандиол):гидроксид калия, водород, карбонат натрия, бром. Напишите уравнения соответствующих реакций.
- б) Жиры. Приведите схему получения жиров. Какие виды жиров существуют. Чем они отличаются.

Какие жиры можно использовать для производства мыла?

Вариант 10

- А) Закончите уравнения возможных реакций: а) гицерин+натрий, оксид кальция+ бензойная кислота, в) акриловая кислота +этанол г)уксусная кислота + водород, д)олеиновая кислота + бром
- б) Какие группы ароматизаторов используют в производстве продуктов питания. Охарактеризуйте каждую группу. Приведите известные примеры. Определите класс органического соединения.

Глава 4. Углеводы

Углеводы — кислородсодержащие органические вещества, содержащие в своем составе карбонильную и гидроксильные группы. Для большинства случаев общая формула углеводов — $C_n(H_2O)_m$ (n, m >3).

Углеводы образуются растениями в процессе фотосинтеза:

хлорофилл

$$xCO_2+ yH_2O+солнечная энергия \longrightarrow C_x(H_2O)y+ xO_2$$

Растения на 85-90% состоят из углеводов (семена, клубни, корни).

Номенклатура. В основном используются тривиальные названия, но можно назвать по систематической номенклатуре: $C_6H_{12}O_6$ — глюкоза (2,3,4,5,6 — пентагидроксигексаналь)

Классификация углеводов:

1. Моносахариды

- 2. Дисахариды (при гидролизе образуют 2 моносахаридных остатка)
- 3. Полисахариды высокомолекулярные соединения, содержащие сотни и тысячи моносахаридных остатков.

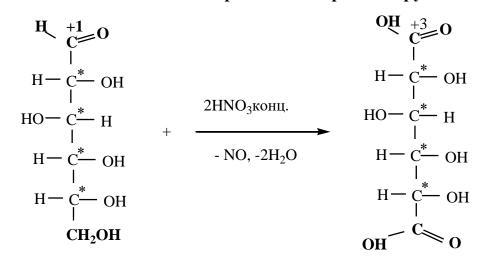
Моносахариды – гетерофункциональные соединения, содержащие в молекуле одну оксо- и несколько гидроксильных групп.

Моносахариды, содержащие старшую альдегидную группу, называются альдозами, кетонную группу – кетозами.

В зависимости от длины углеводородной цепи (3-10 атомов С) моносахариды делятся на триозы, тетрозы, пентозы, и.т.д. Наиболее распространены пентозы и гексозы:

Химические свойства моносахаридов

Наличие в молекулах моносахаридов карбонильной и гидроксильной групп определяет их химические свойства, характерные для альдегидов (или кетонов) и многоатомных спиртов.


Окисление моносахаридов

Окисление альдегидной и первичной спиртовой группы в зависимости от окислителя:

а) Окисление альдегидной группы:

глюконовая кислота

б) Окисление альдегидной и первичной спиртовой группы

сахарная кислота

Восстановление моносахаридов

$$H C OH$$
 $H C OH$
 $H C OH$

сорбит- заменитель сахара

Качественные реакция на альдегидную группу:

- 1) реакция «серебряного зеркала» (осадок металлического серебра)
- 2) окисление реактивом Фелинга (красный осадок Cu₂O)
- 3) альдозы окисляются бромной водой (обесцвечивание бромной воды).

Качественная реакция на многоатомные спирты

Моносахариды как многоатомные спирты при взаимодействии с $Cu(OH)_2$ в щелочи образуют комплексные соединения **яркого синего цвета**.

Спиртовое брожение глюкозы:

$$C_6H_{12}O_6 +$$
 дрожжи $\rightarrow 2C_2H_5OH + 2CO_2$

Молочно-кислое брожение глюкозы:

$$C_6H_{12}O_6$$
 + кисло-молочные бактерии
→ 2 CH_3 -
 CH - COOH
ОН молочная кислота

Молочная кислота образуется в производстве молочных продуктов: сыров, кефира, сметаны.

Самый распространенный углевод — **глюкоза**. Она содержится в соке винограда и других фруктов, входит в состав дисахаридов и полисахаридов.

Фруктоза изомерна глюкозе, она имеет более сладкий вкус, чем глюкоза и сахароза. Содержится во фруктах, в меде. Она также входит в состав углеводов: сахарозы (дисахарида), гликозидов и инулина (полисахарида).

Фруктоза в отличие от глюкозы не окисляется бромной водой, и может быть определена реакцией Селиванова на кетогексозу. При нагревании раствора фруктозы с реактивом Селиванова происходит образование соединения розово-красного цвета.

Дисахариды

Молекулы дисахаридов образованы остатками моносахаридов, находящимися в циклических формах.

Распространенные дисахариды:

Сахароза- углевод образован из двух остатков глюкозы и фруктозы

Мальтоза (солодовый сахар - проросшее зерно) состоит из глюкозыдвух остатков

Лактоза (молочный сахар) состоит из остатков галактозы и глюкозы Содержится в молоке 4-5%.

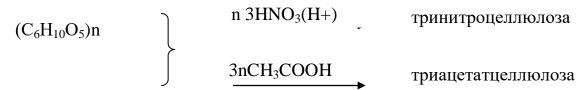
Дисахариды гидролизуются в кислой среде с образованием моносахаридов.

$$C_{12}H_{22}O_{11} + H_2O(H^+) \longrightarrow 2C_6H_{12}O_6$$

Полисахариды — высокомолекулярные углеводы. Важнейшие полисахариды: крахмал, гликоген, целлюлоза — представляют собой гомополисахариды, т.к. состоят из остатков одного моносахарида (глюкозы).

Крахмал - природный полимер растительного происхождения, построенный из остатков -глюкозы, **Молекулярная формула** (- $C_6H_{10}O_5$ -) $_n$

Крахмал образуется в растениях (60-80% - в рисе, 60-70% - в пшенице, 12-22% - в картофеле) в процессе фотосинтеза. Особенностью данного природного полимера является то, что он представляет собой смесь двух полисахаридов: амилозы (10-20%) и амилопектина (80-90%). Это определяет его физические свойства: нерастворим в холодной и набухает (частично растворяется) в горячей воде.


Гликоген (животный крахмал) по составу и структуре макромолекул близок к амилопектину, только имеет еще большее разветвление (через 6-12 звеньев). Он содержится в печени, в мышцах, выполняет резервную энергетическую функцию: источник глюкозы в организме. Сильное разветвление полимера обеспечивает быстрое отщепление нужного количества молекул глюкозы при гидролизе.

Целлюлоза (клетчатка) состоит из остатков глюкозы (но другова пространственного строения.

Полимер имеет линейное строение, не растворим в воде. Гидролизуется только в среде сильных кислот. Целлюлоза самый распространенный

растительный полисахарид. Она составляет 95% хлопкового волокна, в льне - до 90%, в древесине - 40%.

Целлюлоза образует сложные эфиры:

Первый полимер используют в производстве пленки, а растворы полимера в органических растворителях используют в качестве лаков.

Второй полимер имеет линейное (нитевидное) строение, поэтому является искусственным волокном, используется в производстве ацетатного шелка, а также в производстве пленки, органического стекла.

Биологические функции углеводов. Полисахариды, прежде всего крахмал и некоторые дисахариды, являются важными компонентами питания. В организме (кишечнике) они расщепляются до моносахаридов, которые затем всасываются слизистой кишечника. Транспортной формой углеводов в крови является глюкоза. Глюкоза поступает в клетки организма, где используется в качестве клеточного «топлива» или превращается в другие метаболиты (природные соединения), например, в гликоген.

Полисахариды служат также **строительным материалом**, например, в растениях эту функцию выполняет целлюлоза. В животных организмах **полимерные** углеводы часто встречаются в ковалентно связанном виде с липидами (гликолипиды) и белками (гликопротеины), входящими в состав клеточных мембран.

Глава 5 Аминокислоты Белки

Аминокислотами называются соединения, в молекулах которых содержатся одновременно амино- и карбоксильные группы.

Для названий аминокислот используют тривиальные названия (глицин, аланин, валин и т. д).

В состав аминокислот могут входить другие функциональные группы.

Общее число встречающихся природных аминокислот достигает 150. Среди них выделяется группа из 20 наиболее важных, которые образуют белки животного и растительного происхождения.

Природные аминокислоты — это α -аминокислоты, которые могут быть получены при гидролизе белковых веществ животного и растительного происхождения. Основным источником α-аминокислот ДЛЯ живого организма служат пищевые белки. Многие α-аминокислоты синтезируются в другие должны поступать организме, извне, последние называются незаменимыми - валин, лейцин, изолейцин, лизин и др.

Особенностью строения аминокислот является наличие в их молекулах двух функциональных групп, определяющих противоположные свойства: аминогруппа определяет основные свойства, карбоксильная - кислотные свойства.

Биологические функции аминокислот. Аминокислоты — важнейшие компоненты питания — участники обмена веществ в организме.

Аминокислоты является структурным элементом белка, некоторые из них являются медиаторами или гормонами, другие входят в состав ферментов, т.е. специфических белков, которые находятся в клетках организма и играют роль катализаторов биохимических процессов. Аминокислоты используют также в качестве лекарственных средств, например, глицин - улучшает химические процессы в тканях мозга.

Физические свойства. Аминокислоты – кристаллические вещества, хорошо растворимые в воде.

Химические свойства

Аминокислоты – амфотерные соединения, содержащие кислотную (СООН) и основную (-NH₂) группы. Поэтому аминокислоты реагируют как со щелочами, так и с кислотами:

Пептиды - продукты поликонденсации α-аминокислот, в которых они соединены между собой пептидными группами -CO-NH-.

Например,

$$CH_3$$
-CH- CH_3 -CH- CH_2 - CH_3 -CH- CH_3 -CH-

Многие пептиды являются гормонами, которые регулируют биохимические процессы в организме, например, инсулин (содержит 51-остаток аминокислот).

Белки

Растения синтезируют белки из CO_2 и H_2O за счет фотосинтеза, усваивая остальные элементы белков (N, P, S Fe, Mg) из растворимых солей,

находящихся в почве. Животные организмы в основном получают готовые аминокислоты с пищей и на их базе строят белки своего организма.

Белки представляют собой биополимеры α-аминокислот. Если при гидролизе белковые вещества распадаются до соответствующих аминокислот, то такие белковые вещества относят к простым белкам, или протеинам.

Белки имеют большую молекулярную массу макромолекул 10^4 - 10^7 . В воде образуют, как правило, коллоидные растворы. **Коллоидные растворы** — дисперсные системы, занимающие промежуточное положение между растворами низкомолекулярных веществ и грубодисперсными системами (суспензиями, эмульсиями). Размер (диаметр) коллоидной частицы составляет $10^{-7} - 10^{-9}$ м.

При описании состава и структуры белка используют понятия первичная, вторичная, третичная и четвертичная структуры.

Первичная структура белка определяется составом И последовательностью аминокислотных остатков его цепи. При написании формул белков указывают порядок следования друг другом аминокислотных остатков, используя их краткое обозначение по первым трём буквам названия, начиная с N-конца.

Например, последовательность аминокислотных остатков из аминокислот глицина — лейцина — серина — аспаргиновая кислота обозначают Гли – Лей - Сер – Асп.

Вторичная структура характеризует форму полипептидной цепи. В спиралевидной цепи (α-структура) витки спирали скреплены водородными связями между -NH и -O=С группами. Складчатая форма (β-структура) формируется из большого числа параллельных вытянутых полипептидных цепей макромолекул, также связанных между собой водородными связями.

Когда белковая цепь укладывается в спираль, углеводородные радикалы (неполярные части) находятся внутри спирали, а полярные группы

аминокислот вывернуты наружу, в таком виде они могут взаимодействовать между собой, образуя третичную структуру.

Третичная структура - полипептидные цепи свернуты в клубок – глобулу за счет водородных, дисульфидных (-S-S-), солевых (-N ⁺H₃-COO-), сложноэфирных мостиков. Клубок из аминокислотной последовательности образован строго по плану. Замена любого углеводородного радикала кислоты приводит к образованию другого белка.

Несколько клубков белковых молекул соединяются вместе, образуя **четвертичную структуру**.

Белки в организме работают только в третичной и четвертичной структуре.

Денатурация белка – разрушение вторичной и третичной структуры под действием радиации, нагревания, солей тяжелых металлов и некоторых других химических веществ.

Физические свойства белков определяются составом и формой белковой молекулы (табл.).

Таблица

Классификация белков

По составу		
Простые	Сложные	
Только из α-	Содержат белковую и небелковую часть:	
аминокислот	углеводы, липиды, остаток фосфорной кислоты,	
	нуклеиновые кислоты:	
	Гликопротеиды (белок+ углеводы)	
	Липопротеиды(белок + липиды)	
	Фосфопротеиды(белок +остаток Н ₃ РО ₄)	
	Нуклеопротеиды(белок + нуклеиновые кислоты)	
	Форма молекул	

Глобулярная (шаровидная)

Молекулы свернуты в компактные глобулы сферической или эллипсоидной формы. Характерна α- структура.

Растворимы в воде, или в растворах солей, или образуют коллоидные растворы.

Примеры: Аьбумин, глобулин (яйцо)

Фибриллярная (нитевидная)

Молекулы образуют длинные волокна. Характерна β - структура.

Не растворимы в воде.

Примеры: β-кератин (волосы, роговая ткань), коллаген (кожа, костная ткань)

Функции белков

- 1. Структурная. Белки являются строительным материалом всего живого. Например, печень на 57%, кожа на 63%, мышцы на 80% состоят из белков: **кератина, коллагена, эластина, альбумина** и др. белков.
- 2. Транспортная. Перенос низкомолекулярных веществ в виде комплексов с белками (**гемоглобин**).
- 3. Двигательная. Мышечное сокращение за счет белков **актина** и **миозина**.
- 4. Защитная. γ- глобулины (антитела) распознают попавшие в организм бактерии, вирусы или чужеродные белки и нейтрализуют их. Интерферон белок угнетающий размножение вирусов.
- 5. Ферментативная. Ферментами или энзимами принято называть биологические катализаторы. Все известные катализаторы химических превращений в организме белковые вещества.
- 6. Регуляторная. Гормоны-белки оказывают регулирующее влияние на биохимический процесс. Например, **инсулин** регулирует содержание глюкозы в крови.
- 7. Энергетическая. Например, 1 г белка при расщеплении дает 17,6 КДж (яичный **альбумин**, **казеин** молока, **гладин** пшеницы).

Получение белков осуществляют микробиологическим путем с использованием микроорганизмов.

Качественные реакции белков.

1. Биуретовая реакция: белок + $Cu(OH)_2$ окрашивание — характерна для всех белков.

фиолетовое

КОНТРОЛЬНОЕ ЗАДАНИЕ №3

Вариант 1

- 1. Фруктоза, глюкоза, сахароза, лактоза, крахмал, целлюлоза, гликоген определите к какому классу углеводов относится каждое вещество.
- 2.Перечислите известные вам области применения и биологическое значение целлюлозы
- 3. Напишите получение дипептида из глицина (аминоуксусная кислота). Какой тип реакции лежит в основе синтеза белка? В чем заключаются амфотерные свойства аминоуксусной кислоты. Подтвердить уравнением химической реакции.

Вариант 2

- 1. Фруктоза, глюкоза, сахароза, лактоза, крахмал, целлюлоза, гликоген определите к какому классу углеводов относится каждое вещество.
- 2.Перечислите известные вам области применения и биологическое значение сахарозы
- 3. Напишите получение дипептида из глицина (аминоуксусная кислота) и аланина (2-аминопропановой кислоты). Какой тип реакции лежит в основе синтеза белка? В чем заключаются амфотерные свойства 2-аминопропановой кислоты. Подтвердить уравнением химической реакции.

- 1. Фруктоза, глюкоза, сахароза, лактоза, крахмал, целлюлоза, гликоген определите к какому классу углеводов относится каждое вещество.
- 2.Перечислите известные вам области применения и биологическое значение крахмала

3. Состав белков. Общая характеристика белковых молекул. Какие белки: альбумин, коллаген растворимы в воде или водных растворах? Почему?

Вариант 4

1. Фруктоза, глюкоза, сахароза, лактоза, крахмал, целлюлоза, гликоген определите к какому классу углеводов относится каждое вещество.

Перечислите известные вам области применения и биологическое значение лактозы

3. Состав белков. Общая характеристика белковых молекул. Какие белки: глобулин(яйцо), кератин растворимы в воде или водных растворах? Почему?

Вариант 5

- 1. Фруктоза, глюкоза, сахароза, лактоза, крахмал, целлюлоза, гликоген определите к какому классу углеводов относится каждое вещество.
- 2.Перечислите известные вам области применения и биологическое значение глюкозы
 - 3. Функции белков в организме

Вариант 6

- 1. Фруктоза, глюкоза, сахароза, лактоза, крахмал, целлюлоза, гликоген определите к какому классу углеводов относится каждое вещество.
- 2.Перечислите известные вам области применения и биологическое значение фруктозы.
- 3. Что означают процессы: денатурация и гидролиз белка. Какое значение имеют эти процессы?

Вариант 7

1. Фруктоза, глюкоза, сахароза, лактоза, крахмал, целлюлоза, гликоген определите к какому классу углеводов относится каждое вещество.

- 2. Какие углеводы подвергаются гидролизу? Написать реакцию гидролиз указанных углеводов.
- 3. Как различить раствор белка, глюкозы и крахмала? Дайте общую характеристику этим веществам, а также биологическое значение.

Вариант№8

- 1. Как можно различить крахмал, глюкозу, целлюлозу?
- 2. Дайте общую характеристику этим веществам, а также биологическое значение.
- 3. Осуществите превращения:2-аминопропановая кислота → дипептид аминопропановой кислоты → 2-аминопропановая кислота. Напишите уравнения реакции. Какой тип реакции лежит в основе синтеза белка.

Вариант9

- 1 Напишите уравнения реакций а)полного гидролиза крахмала б)получения триацетата целлюлозы. Какое практическое значение имеют эти реакции?
- 2. Что такое первичная структура белка? Какой тип реакции лежит в основе синтеза белка из аминокислот? Приведите реакцию получения трипептида из глицина. Какую цветную реакцию будет давать полученный раствор?

- 1 Напишите уравнения реакций а)полного гидролиза гликогена б)получения триацетата целлюлозы Какое практическое значение имеют эти реакции?
- 2 Как можно различить водный раствор альбумина (яйцо), глюкозы, крахмала
- 3. Дайте общую характеристику этим веществам, а также биологическое значение.

Содержание

1 лава 1. Органические вещества: строение, классификация,		
Номенклатура		
Глава 2. Углеводороды		
Контрольное задание№1		
Глава 3.Кислородсодержащие органические соединения:		
спирты, альдегиды, карбоновые кислоты		
Контрольное задание №2		
Глава 4 Углеводы		
Глава 5 Аминокислоты. Белки		
Контрольное задание №3	51	
Основные источники:		

1.Габриелян О.С., Остроумов И.Г. Естествознание. Химия: учеб.пособ.для проф. и спец. технического профиля. – М. : Издательский центр «Академия», 2017. – 239 с.

Дополнительные источники:

- 1. Габриелян О.С., Остроумов И.Г, Сладков С.А., Дорофеева Н.М. Химия: практикум: учеб.пособие под ред. О.С. Габриеляна. М. : Издательский центр 2. «Академия» 2012. – 304 с.
- 2. Габриелян О.С, Остроумов И.Г. Химия для проф. и спец. технического профиля- М.: Издательский центр «Академия», 2011.-256 с.
 - 3. Ерохин Ю.М.Сборник задач по химии: Учебн.пособие для СПО. М.: Академия, 2010.
- 4. Габриелян О.С., Остроумов И.Г. Химия. Учебник для студентов учреждений среднего профессионального образования. М.: Издательский центр «Академия», 2013.