МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермский государственный национальный исследовательский университет»

Колледж профессионального образования

МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА; ГЕОМЕТРИЯ

Методические рекомендации
для самостоятельной работы по изучению дисциплины
для студентов Колледжа профессионального образования
специальности 09.02.03 Программирование в компьютерных системах

Утверждено на заседании ПЦК общеобразовательных и гуманитарных дисциплин Протокол № 9 от «10» мая 2017г. председатель M3 γ И.В. Власова

Составитель:

Ежова М.А., преподаватель Колледжа профессионального образования

Математика: алгебра и начала математического анализа; геометрия: методические рекомендации для самостоятельной работы по изучению дисциплины для студентов Колледжа профессионального образования специальности 09.02.03 Программирование в компьютерных системах / сост. М.А. Ежова; Колледж проф. образ. ПГНИУ. – Пермь, 2017. – 39 с.

Методические рекомендации для самостоятельной работы по дисциплине «Математика: алгебра и начала математического анализа; геометрия» разработаны на основе требований Федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.03 Программирование в компьютерных системах для оказания помощи студентам специальности 09.02.03 Программирование в компьютерных системах по дисциплине «Математика: алгебра и начала математического анализа; геометрия». Содержат перечень самостоятельных работ по дисциплине «Математика: алгебра и начала математического анализа; геометрия», методические рекомендации по их выполнению.

Предназначено для студентов колледжа профессионального образования ПГНИУ специальности 09.02.03 Программирование в компьютерных системах.

ПЕРЕЧЕНЬ САМОСТОЯТЕЛЬНЫХ РАБОТ СТУДЕНТА

	ТОЯТЕЛЬНЫХ РАБОТ	, ,	
Наименование разделов и		Часы	Вид работы
тем			
	1 триместр		
Раздел 1. Действительные			
числа			
Биография ученых	Самостоятельная работа №1	4	Доклад
Раздел 3. Показательная, логарифмическая и степенная функции			
Тема 3.5.	Самостоятельная	4	Решение задач
Логарифмические	работа № 2		
уравнения и неравенства			
Раздел 4.			
Тригонометрические			
функции			
Тема 4.1.Тождественные	Самостоятельная	3	Решение задач
преобразования	работа№ 3		
Тема 4.4. Решение	Самостоятельная	3	Решение задач
простейших	работа№ 4		
тригонометрических			
уравнений			
Всего		14	
	2 триместр		
Раздел 5.			
Дифференциальное			
исчисление			
Тема 5.1. Понятие о	Самостоятельная	4	Выполнение
производной. Правила	работа № 5		расчетно-

вычисления производной			графических
функции			работ
Тема 5.6. Исследование	Самостоятельная	4	Выполнен
функции с помощью	работа № 6		ие расчетно-
производной			графических работ
Раздел 6. Интегральное			
исчисление			
Тема 6.3.Площадь	Самостоятельная	4	Выполнение
криволинейной трапеции	работа № 7		расчетно-
определённого интеграла			графических
			работа
Раздел 7. Прямые и			
плоскости в пространстве			
Ученые, которые внесли	Самостоятельная	2	Доклад
особый вклад в развитие	работа № 8		
геометрии.			
Всего		14	
	3 триместр		L
Раздел 8. Геометрические те	ела		
и поверхности			
Тема 8.4. Объемы и	Самостоятельная	4	Выполнение
площади геометрических	работа № 9		расчетно-
тел			графических
Dagra		4	работ
Всего		4	
Всего		32	

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методические указания по выполнению самостоятельных работ ОДПД.01 учебной дисциплины Математика: алгебра И начал математического анализа; геометрии предназначены для реализации ОПОП по специальности 09.02.03 Программирование в компьютерных системах и разработаны соответствии В \mathbf{c} Федеральным государственным образовательным стандартом среднего профессионального образования.

Задания на самостоятельные работы разработаны и составлены на основе рабочей программы учебной дисциплины ОДПД.01 Математика: алгебра и начал математического анализа; геометрии. Указанная дисциплина относится к общеобразовательному циклу в структуре основной профессиональной образовательной программы

Самостоятельная работа студента — планируемая учебная, учебноисследовательская, научно-исследовательская, проектная работа, выполняемая за рамками расписания учебных занятий по заданию и при методическом руководстве преподавателя, но без его непосредственного участия и является обязательной для каждого студента.

Целью самостоятельной работы является:

 обеспечение профессиональной подготовки выпускника в соответствии с ФГОС СПО;

- формирование и развитие общих компетенций, определённых в ФГОС СПО;
- формирование и развитие профессиональных компетенций, соответствующих основным видам профессиональной деятельности.

Задачами, реализуемые в ходе проведения самостоятельной работы студента, в образовательной среде колледжа являются:

- систематизация, закрепление, углубление и расширение полученных теоретических знаний и практических умений студентов;
- развитие познавательных способностей и активности студентов:
 творческой инициативы, самостоятельности, ответственности и организованности;
- формирование самостоятельности мышления: способности к саморазвитию, самосовершенствованию и самореализации;
- овладение практическими навыками применения информационнокоммуникационных технологий в профессиональной деятельности;
- развитие исследовательских умений.

Контроль результатов самостоятельной работы студента может осуществляться в пределах времени, отведенного на обязательные учебные занятия и самостоятельную работу по дисциплине математика и может проходить в письменной, устной или смешанной форме с предоставлением изделия или продукта творческой деятельности.

Критериями оценки результатов самостоятельной работы учащегося являются:

- уровень освоения учебного материала;
- умение использовать теоретические знания и умения при выполнении практических задач;
- уровень сформированности общих компетенций

СРС, как один из видов промежуточного контроля за качеством усвоения изучаемого материала, служит одновременно формой отчетности по следующим разделам данной учебной дисциплины:

- Биография ученых
- Тема 3.5. Логарифмические уравнения и неравенства
- Тема 4.1.Тождественные преобразования
- Тема 4.4. Решение простейших тригонометрических уравнений
- Тема 5.1. Понятие о производной. Правила вычисления производной функции
- Тема 5.6. Исследование функции с помощью производной
- Тема 6.3.Площадь криволинейной трапеции определённого интеграла
- Ученые, которые внесли особый вклад в развитие геометрии.
- Тема 8.1. Многогранники

Указания к выполнению СР

- 1. СР нужно выполнять в отдельной тетради в клетку, чернилами черного или синего цвета. Необходимо оставлять поля шириной 5 клеточек для замечаний преподавателя.
- 2. Решения задач следует излагать подробно и аккуратно, объясняя и мотивируя все действия по ходу решения и делая необходимые чертежи.
- 3. Оформление решения задачи следует завершать словом «Ответ».
- 4. После получения проверенной преподавателем работы студент должен в этой же тетради исправить все отмеченные ошибки и недочеты. Вносить исправления в сам текст работы после ее проверки запрещается.

5. Оценивание индивидуальных образовательных достижений по результатам выполнения СР производится в соответствии с универсальной шкалой (таблица).

Процент	Качественная оценка индивидуальных		
результативности	образовательных достижений		
(правильных ответов)	балл (отметка)	вербальный аналог	
81 ÷ 100	5	отлично	
61 ÷ 80	4	хорошо	
40 ÷ 60	3	удовлетворительно	
менее 40	2	неудовлетворительно	

Перечень учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные источники:

- 1. Башмаков М.И. Математика: учебник для студентов учреждений среднего образования.- М:Академия 2017 г.-256 с.
- 2. Башмаков М.И. Математика. Задачник: учебное пособие для студентов учреждений среднего образования.- М:Академия 2016 г.- 416 с.

Дополнительные источники:

1. Атанасян Л.С. и др. Геометрия 10-11. Учебник для 10-11 классов средней школы. –М.: Мнемозина, 2015. - 207 с.

- 2. Алгебра и начала анализа: Учебник для 10-11 кл. / Под ред. Колмогорова А.Н.- 11 изд. - М.: Просвещение, 2015. - 384 с.
- 3. Математика для техникумов. Алгебра и начала анализа./ Под ред. Яковлева Г.Н. М.: Наука, 2017. 294 с.
- 4. Математика для техникумов. Геометрия. / Под ред. Яковлева Г.Н. М.: Наука, 2016.
 - 5. Пехлецкий И.Д. Математика: учебник. М.: Академия, 2015. 344 с.

Самостоятельная работа №1 на тему: Жизнь и деятельность математиков-ученых.

Цель: расширить кругозор учащихся, познакомить с жизнью и деятельностью математиков — ученых.

Задание для учащихся. Написать сообщение на заданную тему.

Сообщение — это сокращенная запись информации, в которой должны быть отражены основные положения текста, сопровождающиеся аргументами, 1—2 самыми яркими и в то же время краткими примерами.

Сообщение составляется по нескольким источникам, связанным между собой одной темой. Вначале изучается тот источник, в котором данная тема изложена наиболее полно и на современном уровне научных и практических достижений. Записанное сообщение дополняется материалом других источников.

Этапы подготовки сообщения:

1. Прочитайте текст.

- 2. Составьте его развернутый план.
- 3. Подумайте, какие части можно сократить так, чтобы содержание было понято правильно и, главное, не исчезло.
- 4. Объедините близкие по смыслу части.
- 5. В каждой части выделите главное и второстепенное, которое может быть сокращено при конспектировании.
- 6. При записи старайтесь сложные предложения заменить простыми.

Тематическое и смысловое единство сообщения выражается в том, что все его компоненты связаны с темой первоисточника.

Сообщение должно содержать информацию на 3-5 мин. и сопровождаться презентацией, схемами, рисунками, таблицами и т.д.

Выполнить самостоятельно:

9. Константин Поссе;

10. Андрей Колмогоров;

Написать сообщение на тему: «Математики - известные ученые» (на выбор).

1. Николай Лобачевский;	11.Рене Декарт;
2. Софья Ковалевская;	12. Эварист Галуа;
3. Николай Боголюбов;	13. Карл Вейерштрасс;
4. Григорий Перельман;	14.Пьер Ферма;
5. Пафнутий Чебышев;	15.Джон Нейман;
6. Виктор Садовничий;	16.Жан Даламбер;
7. Леонтий Магницкий;	17.Клаус Мёбиус;
8. Владимир Брадис;	18.Евклид;

19. Пифагор;

20. Готфрид Вильгельм Лейбниц.

Самостоятельная работа №2 на тему: Логарифмические уравнения и неравенства

Цель: Знать методы решения показательных и логарифмических уравнений и неравенств, применять их при решении упражнений.

Теоретический материал

Степени чисел от 0 до 10

n	0	1	2	3	4	5	6	7	8	9	10
2^n	1	2	4	8	16	32	64	128	256	512	1024
3^n	1	3	9	27	81	243	729	2187	6561	19683	5904 9
4 ⁿ	1	4	16	64	256	1024	4096	16384	65536	26214 4	
5^n	1	5	25	125	625	3125	15625	78125	39062 5		
6 ⁿ	1	6	36	216	1296	7776	46656	27993 6			
7 ⁿ	1	7	49	343	2401	1680 7	11764 9				
8^n	1	8	64	512	4096	3276 8					
9^n	1	9	81	729	6561	5904 9					
10 ⁿ	1	1 0	10 0	100 0	1000 0						

Решение квадратных

уравнений:

Формулы сокращенного умножения:

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$a \cdot x^2 + bx + c = 0$$

$$D=b^2-4ac,$$

Если
$$D > 0$$
, то $x_{1,2} = \frac{-b \pm \sqrt{d}}{2a}$

Если
$$D=0$$
, то $x=\frac{-b}{2a}$

Если
$$D < 0$$
, то корней нет

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$a^2 - b^2 = (a - b) \cdot (a + b)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Свойства степеней

1.
$$a^m \cdot a^n = a^{m+n}$$

$$2. \frac{a^m}{a^n} = a^{m-n}$$

3.
$$(a^m)^n = a^{m \cdot n}$$

4.
$$a^n \cdot b^n = (a \cdot b)^n$$

$$5. a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

6.
$$a^{-n} = \frac{1}{a^n}$$

Свойства корней п-ой степени

1.
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$2. \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

3.
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n-m]{a}$$

4.
$$\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

7.
$$a^0 = 1$$

8.
$$\left(\frac{a}{b}\right)^n = \left(\frac{b}{a}\right)^{-n}$$

9.
$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

$$5. \sqrt[n-k]{a^{n \cdot k}} = \sqrt[n]{a^m}$$

6.
$$\sqrt[n]{a^n} = a$$

7.
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Показательное уравнение – это уравнение, в котором неизвестное содержится в показателе степени

Решение показательных уравнений. Метод выноса за скобки Образцы решения

1. Решить уравнение: $3^{x+1} - 2 \cdot 3^{x-2} = 25$

В левой части выносим за скобки степень с наименьшим показателем, то есть 3^{x-2} . В результате получим:

$$3^{x-2} \left(\frac{3^{x+1}}{3^{x-2}} - \frac{2 \cdot 3^{x-2}}{3^{x-2}} \right) = 25$$

$$3^{x-2}(3^{x+1-(x-2)}-2)=25$$

$$3^{x-2}(3^{x+1-x+2}-2) = 25$$

$$3^{x-2}(3^3-2)=25$$

$$3^{x-2} \cdot 25 = 25$$

$$3^{x-2}=1$$
, $3^{x-2}=3^0$, отсюда следует, что $x=2$.

Otbet: x = 2.

Уравнения, сводящиеся к квадратным (метод замены)

Образцы решения

2. Решить уравнение: $4^x + 2^{x+1} - 24 = 0$.

Решение: Заметив, что $4^x = (2^2)^x = 2^{2x} = (2^x)^2$, а $2^{x+1} = 2 \cdot 2^x$

Перепишем заданное уравнение в виде:

$$(2^x)^2 + 2 \cdot 2^x - 24 = 0$$

Вводим новую переменную: $t = 2^x$, тогда уравнение примет вид:

$$t^2 + 2t - 24 = 0$$

Решив квадратное уравнение, получим: $t_1 = 4$, $t_2 = -6$. Но так как

 $t = 2^x$, то надо решить два уравнения:

$$2^{x} = 4$$
 μ $2^{x} \neq -6$

Решим первое уравнение:

 $2^{x} = 2^{2}$ отсюда следует, что x = 2.

Рассмотрим второе уравнение.

Второе уравнение не имеет решения, так как $2^x > 0$ для любых значений x. Ответ: 2.

Образцы решения логарифмических уравнений

1. Решить уравнение:

$$\log_3(x-2) + \log_3(x+2) = \log_3(2x-1)$$

Решение: Используя формулу: $\log_a x + \log_a y = \log_a (x \cdot y)$, заменим сумму логарифмов произведением:

$$\log_3((x-2)\cdot(x+2)) = \log_3(2x-1)$$

$$x^2 - 4 = 2x - 1$$

$$x^2 - 4 - 2x + 1 = 0$$

$$x^2 - 2x - 3 = 0$$

$$x_1 = 3$$
; $x_2 = -1$.

Проверка:

$$x_1 = 3$$

$$\log_3(3-2) + \log_3(3+2) = \log_3(2 \cdot 3 - 1)$$

$$\log_3 5 = \log_3 5$$

$$x_2 = -1$$

$$\log_3(-1-2) + \log_3(-1+2) = \log_3(2 \cdot (-1) - 1)$$
 - не существует.

Otbet: x = 3

2. Решить уравнение:

 $\log_4^2 x + \log_4 x - 2 = 0$. Используем метод замены.

$$\log_4 x = t \implies t^2 + t - 2 = 0$$

$$t_1 = 1$$
, $t_2 = -2$. Подставим в замену.

$$\log_4 x = 1 \Rightarrow x = 4^1 = 4$$
, $\log_4 x = -2 \Rightarrow x = 4^{-2} = \frac{1}{4^2} = \frac{1}{16}$.

Other:
$$x = 4$$
; $x = \frac{1}{16}$.

Образцы решения показательных неравенств

1. Решить неравенство $2^x - 2^{x-2} \le 3$.

Решение:

Выносим за скобки степень с наименьшим показателем, т.е. 2^{x-2} .

Получим: $2^{x-2}(2^2-1) \le 3$,

$$2^{x} \cdot 3 \leq 3$$
,

$$2^{x} \le 1$$
, так как $2^{0} = 1$ то

$$2^x \le 2^0$$

Так как основание 2>1, то неравенство равносильно неравенству того же смысла $\mathbf{x}\leq \mathbf{0}$.

Ответ: $x \in (-\infty; 0)$.

2. Решить неравенство $7^{2x} - 8 \cdot 7^x + 7 > 0$

Решение.

Заменим : $7^x = t, t > 0$;

Получим неравенство: $t^2 - 8t + 7 > 0$. Трехчлен $t^2 - 8t + 7$ разложим на множители: (t-7)(t-1) > 0.

$$7^x < 7$$
, $a = 7 > 1$, to $x < 1$

$$7^x > 1$$
, $7^x > 7^0$, $a = 7 > 1$, to $x > 0$.

Other: $x \in (-\infty; 1) \cup (0; \infty)$.

Образцы решения логарифмических неравенств.

1. Решить неравенство:

№п/ Вариант 1

П

7

$$1 \quad 3^{x+2} - 3^x = 72$$

$$2 \cdot 3^{x+3} - 5 \cdot 3^{x-2} = 1443$$

$$3 \qquad 2^{2x} + 3 \cdot 2^x - 10 = 0$$

$$4 \qquad \left(\frac{1}{6}\right)^{2x} - 5 \cdot \left(\frac{1}{6}\right)^{x} - 6 = 0$$

$$5 \qquad log_3^2 x - 2log_3 x - 3 = 0$$

6
$$\log_7 2 = \log_7 x^2 - \log_7 8$$

Показательные и логарифмические неравенства

$$1 2^x + 2^{x+2} \le 20$$

$$2 7^{x} > 7^{x-1} + 6$$

$$3 \qquad 7^{2x} - 8 \cdot 7^x + 7 > 0$$

$$4 \qquad 0,2^{2x}-1,2\cdot 0,2^x+0,2>0$$

$$\log_7(2-x) \le \log_7(3x+6)$$

6
$$\log_{\frac{1}{3}}(1-2x) > \log_{\frac{1}{3}}(5x+25)$$
 $\log_{0,8}(2x-3) < \log_{0,8}(3x-5)$

Вариант 2

$$2^{x} - 2^{x-4} = 15$$

$$3^{x-1} + 3^{x-2} + 3^{x-3} = 3159$$

$$2 \cdot 4^{x} - 5 \cdot 2^{x} + 2 = 0$$

$$4 \cdot \left(\frac{1}{16}\right)^{x} + 15 \cdot \left(\frac{1}{4}\right)^{x} - 4 = 0$$

$$\log_4^2 x - 4\log_4 x + 3 = 0$$

$$\log_2 x^2 = \log_2 2 + \log_2 18$$

$$\log_{0.7}(x+3) + \log_{0.7}(x-3) = \log_{0.1}\log_{1.1}(x+2) + \log_{1.1}(x-2) = \log_{1.1}(x+2)$$

$$\left(\frac{1}{5}\right)^{3x+4} + \left(\frac{1}{5}\right)^{3x+5} > 6$$

$$2^{x+2} - 2^x > 96$$

$$9^x - 6 \cdot 3^x < 27$$

$$\left(\frac{1}{7}\right)^{2x} - 8 \cdot \left(\frac{1}{7}\right)^{x} + 7 < 0$$

$$\log_{2,5}(4x-5) \ge \log_{2,5}(3x-6)$$

$$\log_{0,8}(2x-3) < \log_{0,8}(3x-5)$$

Самостоятельная работа №3 на тему: Тождественные преобразования

Цель: Закрепить навыки преобразования тригонометрических выражений.

Основные формулы тригонометрии

$$\sin^2 x + \cos^2 x = 1$$

$$\sin^2 x = 1 - \cos^2 x$$

$$\cos^2 x = 1 - \sin^2 x$$

$$tgx = \frac{sinx}{cosx}$$
; $ctgx = \frac{cosx}{sinx}$; $tgx \cdot ctgx = 1$; $tgx = \frac{1}{ctgx}$;

$$ctgx = \frac{1}{tgx}$$
.

Синус и косинус суммы и разности аргументов:

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \sin\beta + \cos\alpha$$

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \sin\beta + \cos\alpha$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - ta\alpha \cdot ta\beta}$$

Формулы двойного аргумента:

$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$

$$\cos 2\alpha = (\cos \alpha)^2 - (\cos \alpha)^2$$

$$tg2\alpha = \frac{2 \cdot tg\alpha}{1 - tg^2\alpha}$$

Формулы понижения степени:

$$(\sin \alpha)^2 = \frac{1 - \cos 2\alpha}{2}$$

$$(\cos \alpha)^2 = \frac{1 + \cos 2\alpha}{2}$$

Преобразование сумм тригонометрических функций в произведение:

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

•		
1	Вычислить выражение	

Вариант 1

- 1. Вычислить выражение, используя формулы синус и косинус суммы и разности аргументов: sin 105°
- 2. Упростить выражение, используя формулы синус и косинус суммы и разности аргументов:

$$2.1.\,\sin\left(\frac{\pi}{3} + \alpha\right) - \frac{1}{2}\sin\alpha$$

- 2.2. $\sin \alpha \sin \beta + \cos(\alpha + \beta)$
- 2.3. $\cos(\alpha \beta) \cos \alpha \cos \beta$
- 2.4. $\sin(\alpha + \beta) + \sin(\alpha \beta)$

- Вариант 2
- 1. Вычислить выражение, используя формулы синус и косинус суммы и разности аргументов: cos 15°
- 2. Упростить выражение, используя формулы синус и косинус суммы и разности аргументов:

2.1.
$$\cos\left(\frac{\pi}{4} + \alpha\right) + \frac{\sqrt{2}}{2}\sin\alpha$$

- 2.2. $\sin(\alpha + \beta) \sin \alpha \sin \beta$
- 2.3. $\sin \alpha \cos \beta \sin(\alpha \beta)$
- 2.4. $\cos(\alpha \beta) \cos(\alpha + \beta)$
- 3. Найдите значение выражения, используя формулы синус и косинус суммы и разности аргументов:
- 3.1. $\cos 107^{\circ} \cos 107^{\circ} + \sin 107^{\circ} \sin 100^{\circ}$
- 3.2. $\sin 63^{\circ} \cos 27^{\circ} + \cos 63^{\circ} \sin 27^{\circ}$
- 3. Найдите значение выражения, используя формулы синус и косинус суммы и разности аргументов:
- 3.1. $\cos 36^{\circ} \cos 24^{\circ} \sin 36^{\circ} \sin 3.2. \sin 51^{\circ} \cos 21^{\circ} \cos 51^{\circ} \sin 2.2. \sin 51^{\circ} \cos 21^{\circ} + \cos 51^{\circ} \sin 2.2. \sin 51^{\circ} \cos 21^{\circ} + \cos 51^{\circ} \sin 2.2. \sin 51^{\circ} \cos 21^{\circ} + \cos 51^{\circ} \sin 2.2. \sin 51^{\circ} \cos 21^{\circ} + \cos 51^{\circ} \sin 2.2. \sin 51^{\circ} \cos 21^{\circ} + \cos 51^{\circ} \sin 2.2. \sin 51^{\circ} \cos 21^{\circ} + \cos 51^{\circ} \sin 2.2. \sin 51^{\circ} \cos 21^{\circ} + \cos 51^{\circ} \sin 2.2. \sin 51^{\circ} \cos 21^{\circ} + \cos 51^{\circ} \cos 5$

3.3.
$$\cos \frac{\pi}{12} \cos \frac{\pi}{4} - \sin \frac{\pi}{12} \sin \frac{\pi}{4}$$

3.4.
$$\sin \frac{\pi}{12} \cos \frac{\pi}{4} - \cos \frac{\pi}{12} \sin \frac{\pi}{4}$$

3.5.
$$\frac{\cos 105^{\circ} \cos 5^{\circ} + \sin 105^{\circ} \cos 85}{\sin 95^{\circ} \cos 5^{\circ} - \cos 95^{\circ} \sin 185^{\circ}}$$

3.3.
$$\cos \frac{5\pi}{8} \cos \frac{3\pi}{8} + \sin \frac{5\pi}{8} \sin \frac{3\pi}{8}$$

3.4.
$$\sin \frac{2\pi}{15} \cos \frac{\pi}{5} + \cos \frac{2\pi}{15} \sin \frac{\pi}{5}$$

3.5.
$$\frac{\sin 75^{\circ} \cos 5^{\circ} - \cos 75^{\circ} \cos}{\cos 375^{\circ} \cos 5^{\circ} - \sin 15^{\circ} \sin}$$

$$4.1.\sin(\alpha + \beta) + \sin(-\alpha)\cos(-\beta) =$$
аргументов:

$$4.1.\cos(\alpha + \beta) + \sin(-\alpha)\sin(-\beta)$$

4.2.
$$\sin(30^{\circ} - \alpha) - \cos(60^{\circ} - \alpha) = -4.2$$
. $\sin(30^{\circ} - \alpha) + \sin(30^{\circ} + \alpha)$

$$5.1. \ \frac{\sin 2\alpha}{\cos \alpha} = \sin \alpha$$

5.2.
$$\frac{\cos 2\alpha}{\cos \alpha - \sin \alpha} = -\sin \alpha$$

$$5.3. \ 2\sin 15^{\circ}\cos 15^{\circ}$$

5.4.
$$(\cos 15^{\circ} + \sin 15^{\circ})^2$$

$$5.1. \quad (\cos \alpha)^2 - \cos 2\alpha$$

5.2.
$$\frac{\sin 6\alpha}{(\cos 3\alpha)^2}$$

5.3.
$$(\cos 75^{\circ} - \sin 75^{\circ})^2$$

5.4.
$$(\cos 15^{\circ})^2 - (\sin 15^{\circ})^2$$

6.Известно, что
$$\sin \alpha = \frac{5}{13}$$
,

$$\frac{\pi}{2} < \alpha < \pi$$

Найдите: $\sin 2\alpha$, $\cos 2\alpha$

6.Известно, что
$$\cos \alpha = 0.8$$
,

$$0 < \alpha < \frac{\pi}{2}$$

Найлите: $\sin 2\alpha$, $\cos 2\alpha$

7.Известно, что
$$\cos \alpha = \frac{2}{3}$$
.

$$0 < \alpha < \frac{\pi}{2}$$

Hайдите:
$$\sin \frac{\alpha}{2}$$
, $\cos \frac{\alpha}{2}$

7.Известно, что
$$\cos \alpha = \frac{3}{4}$$
.

$$0 < \alpha < \frac{\pi}{2}$$

Hайдите:
$$\sin \frac{\alpha}{2}$$
, $\cos \frac{\alpha}{2}$

1. Представить в виде произведения:

$$8.1. \sin 40^{\circ} + \sin 16^{\circ}$$

8.2.
$$\sin 20^{\circ} - \sin 40^{\circ}$$

8.3.
$$\cos 15^{\circ} + \cos 45^{\circ}$$

8.4.
$$\cos 46^{\circ} - \cos 74^{\circ}$$

8.Представить в виде произведения:

8.1.
$$\sin 10^{\circ} + \sin 50^{\circ}$$

8.2.
$$\sin 52^{\circ} - \sin 36^{\circ}$$

8.3.
$$\cos 20^{\circ} + \cos 40^{\circ}$$

$$8.4. \cos 75^{\circ} - \cos 15^{\circ}$$

2. Представить в виде произведения:

9.1.
$$\frac{1}{2} - \cos \alpha$$

2.2.
$$\cos \alpha + \sin \alpha$$

9.3.
$$\frac{\cos 68^{\circ} - \cos 22^{\circ}}{\sin 68^{\circ} - \sin 22^{\circ}}$$

9.Представить в виде произведения:

9.1.
$$\frac{\sqrt{3}}{2} + \sin \alpha$$

9.2.
$$\sin \alpha - \cos \alpha$$

9.3.
$$\frac{\sin 130^{\circ} + \sin 110^{\circ}}{\cos 130^{\circ} + \cos 110^{\circ}}$$

10. Докажите, что верно равенство используя формулы преобразования сумм тригонометрических функций в произведение:

$$\sin 20^{0} + \sin 40^{0} - \cos 10^{0} = 0$$

10. Докажите, что верно равенство используя формулы преобразования сумм тригонометрических функций в произведение:

$$\cos 85^{0} + \cos 35^{0} - \cos 25^{0} = 0$$

Самостоятельная работа №4 на тему: Решение тригонометрических уравнений

Цель: Знать методы решения тригонометрических уравнений и применять их при решении упражнений.

Теоретический материал

Формулы для повторения

$$\arcsin(-a) = -\arcsin a$$
 $\arccos(-a) = \pi - \arccos a$
 $\arctan(-a) = -\arctan a$
 $\arctan(-a) = -\arctan a$
 $\arctan(-a) = \pi - \arctan a$

Общие формулы решения тригонометрических уравнений

I. $\sin x = a$, $ a \le 1$;	II. $\cos x = a$, $ a \le 1$
$x = (-1)^n \arcsin a + \pi n, n \in z$	$x = \pm \arccos a + 2\pi n, n \in z$
II $tg x = a$, $a - любое число$	I $ctg x = a$, $a - любое число$
T $x = \operatorname{arctg} x + \pi n, \ n \in \mathbb{Z}$	$x = \operatorname{arcctg} x + \pi n, n \in \mathbb{Z}$

Частные решения тригонометрических уравнений

sin x=0	sin x=1	sin x=-1
x=πn, n∈z	$x=\frac{\pi}{2}+2\pi n$, nez	$x=-\frac{\pi}{2}+2\pi n$, $n\in \mathbb{Z}$
cos x=0	cos x=1	cos x=-1
$X=\frac{\pi}{2}+\pi n$, $n\in \mathbb{Z}$	x= 2πn, n ∈ z	$x=\pi + 2\pi n$, $n \in z$

Значение тригонометрических функций

град	00	30^{0}	45 ⁰	60°	900
радиан	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sinα	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg a	0	$\frac{\sqrt{3}}{3}$	1	√3	не сущест в
ctg α	Не существ	√3	1	$\frac{\sqrt{3}}{3}$	0

Формулы для повторения:

$$ax^2 + bx + c = 0$$
, $D = b^2 - 4 \cdot a \cdot c$.

Если D>0, то корни квадратного уравнения находим по формуле:

$$\mathbf{x}_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Образцы решения тригонометрических уравнений второго порядка:

Образец№1

Решить уравнение:

$$2\sin^2 x - 5\sin x + 2 = 0$$

Решение. Введем новую переменную: $z = \sin x$. Тогда уравнение примет вид:

$$2z^2 - 5z + 2 = 0$$
. Решая квадратное уравнение находим $z_1 = 2$ и $z_2 = \frac{1}{2}$.

Значит, либо $\sin x = 2$, либо $\sin x = \frac{1}{2}$. Первое уравнение не имеет корней, а из второго находим

$$x = (-1)^n \arcsin \frac{1}{2} + \pi n, n \in \mathbb{Z}$$

$$x = (-1)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$$

Образец №2

Решить уравнение:

$$\cos^2 x - \sin^2 x - \cos x = 0$$

Решение:

Воспользуемся тем, что $\sin^2 x = 1 - \cos^2 x$

Тогда заданное уравнение можно записать в виде:

$$\cos^2 x - (1 - \cos^2 x) - \cos x = 0$$

После преобразования получим:

$$2\cos^2 x - \cos x - 1 = 0$$

Введем новую переменную z = cos x. Тогда данное уравнение примет вид:

$$2z^2 - z - 1 = 0$$
. Решая его, находим $z_1 = 1$, $z_2 = -\frac{1}{2}$

Значит, либо $\cos x = 1$, либо $\cos x = -\frac{1}{2}$

Решая первое уравнение $\cos x = 1$, как частное, находим его решение

$$x = 2\pi n, n\epsilon z$$
.

Решая второе уравнение, находим решение:

$$x = \pm \arccos\left(-\frac{1}{2}\right) + 2\pi n, n \in z$$

$$x = \pm \left(\pi - \arccos \frac{1}{2}\right) + 2\pi n$$
, $n \in \mathbb{Z}$

$$x = \pm (\pi - \frac{\pi}{3}) + 2\pi n$$
, $n \in \mathbb{Z}$

$$x = \pm \frac{2\pi}{3} + 2\pi n$$
, $n \in \mathbb{Z}$

Образец №3

Решить уравнение:

$$3\sin^2 x - 2\sqrt{3}\sin x \cos x + 5\cos x = 2$$

Решение:

С числом 2, содержащимся во правой части, поступим следующим образом.

Известно, что $\sin^2 x + \cos^2 x = 1$ - это тождество верно для любого значения

x.

Тогда $2(\sin^2 x + \cos^2 x) = 2\sin^2 x + 2\cos^2 x = 2$.

Заменив в первом уравнении 2 на $2\sin^2 x + 2\cos^2 x$, получим:

$$3\sin^2 x - 2\sqrt{3}\sin^2 x \cos^2 x = 2\sin^2 x + 2\cos^2 x$$

$$3\sin^2 x - 2\sqrt{3}\sin^2 x - 2\sin^2 x - 2\sin^2 x - 2\cos^2 x = 0$$

$$\sin^2 x - 2\sqrt{3}\sin x \cos x + 3\cos^2 x = 0$$

Обе части уравнения разделим на $\cos^2 x$ почленно

$$\frac{\sin^2 x}{\cos^2 x} - \frac{2\sqrt{3} \sin x \cos x}{\cos^2 x} + \frac{3 \cos^2 x}{\cos^2 x} = 0$$

Так как $\frac{\sin x}{\cos x} = tgx$, то полученное уравнение запишем в виде:

$$tg^2x - 2\sqrt{3}tgx + 3 = 0$$

Введя новую переменную t=tg x, получим квадратное уравнение:

$$t^2 - 2\sqrt{3} t + 3 = 0$$
, решая уравнение, получим: $t = \sqrt{3}$

Итак, tg
$$x=\sqrt{3}$$

$$x = arctg \sqrt{3} + \pi n$$
,

$$x = \frac{\pi}{3} + \pi n$$
, $n \in \mathbb{Z}$.

Решить самостоятельно

Вариант 1

- 1. Решить уравнения:
- 1.1. $2\cos x \sqrt{2} = 0$
- 1.2. tg2x + 1 = 0
- $1.3. \quad \sin\left(\frac{x}{3} + \frac{\pi}{4}\right) = 1$
- 2. 2. Определить число корней уравнения

$$3$$
ctg $2x - \sqrt{3} = 0$ принадлежащих отрезку $\left[\frac{\pi}{6}; \pi\right]$.

Вариант 2

- 1. Решить уравнения:
- 1.1. $\sqrt{3} \operatorname{tgx} 1 = 0$
- $1.2. \quad 2\sin\left(-\frac{x}{2}\right) = 1$
- 1.3. $2\cos(2x + \frac{\pi}{4}) = -\sqrt{2}$
- 2. Найдите наименьший

положительный корень уравнения

$$\sin\left(x-\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}.$$

Решить уравнения:

1.
$$3\sin^2 x - 5\sin x - 2 = 0$$

2.
$$3\cos^2 2x + 10\cos 2x + 3 = 0$$

3.
$$3\cos^2 x + 10\cos x + 3 = 0$$

4.
$$2\sin^2 x + 3\cos x = 0$$

5.
$$3tg^2x + 2tgx - 1 = 0$$

$$6. \ 2\sin^2 x - 5\sin x \cos x + 2\cos^2 x = 0$$

7.
$$2\cos^2 x - \sin x \cos x + 5\sin^2 x = 3$$

Решить уравнения:

1.
$$6\cos^2 x + \cos x - 1 = 0$$

2.
$$2\sin^2 2x - 3\sin 2x + 1 = 0$$

3.
$$2\sin^2 x - 3\sin x + 1 = 0$$

3.
$$5\cos^2 x + 6\sin x - 6 = 0$$

4.
$$2tg^2x + 3tgx - 2 = 0$$

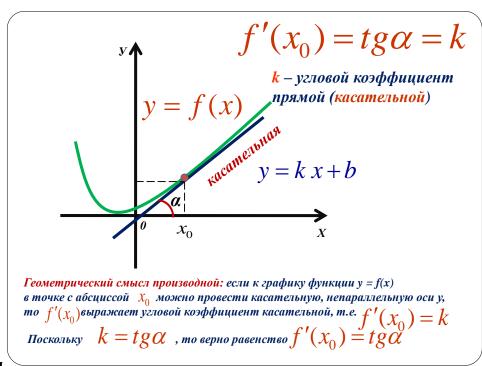
5.
$$3\cos^2 x + 10\sin x \cos x + 3\sin^2 x = 0$$

6.
$$2\sin^2 x - 3\sin x \cos x + 4\cos^2 x = 4$$

Самостоятельная работа №5 на тему: Понятие о производной. Правила вычисления производной функции

Цель: Иметь понятие о геометрическом смысле производной. Уметь находить тангенс угла наклона касательной к оси ох.

Теоретический



материал

Решить самостоятельно:

Вариант 1

1. Найти угол между касательной к графику функции y = f(x)в точке с абсциссой x_0 .

1.1.
$$f(x) = 3x^2$$
, $x_0 = 1$.

1.2.
$$f(x) = \frac{1}{2}x^2$$
, $x_0 = 2$.

1.3.
$$f(x) = 4\sqrt{x}, \quad x_0 = 4.$$

1.4.
$$f(x) = 5\cos x$$
, $x_0 = \frac{\pi}{6}$.

1.5.
$$f(x) = \sin 3x$$
, $x_0 = \frac{\pi}{12}$.

2. Записать уравнение касательной к графику функции y = f(x)в точке с абсциссой x_0 .

2.1.
$$f(x) = x^5 - x^3 + 3x - 1$$
, $x_0 = 0$.

2.2.
$$f(x) = x^3 - 2x$$
, $x_0 = 2$.

Вариант 2

1. Найти угол между касательной к графику функции y = f(x)в точке с абсциссой x_0 .

1.1.
$$f(x) = 2x^3$$
, $x_0 = 1$.

1.2.
$$f(x) = \frac{1}{4}x^4$$
, $x_0 = 2$.

1.3.
$$f(x) = 3\sqrt{x}, \quad x_0 = 9.$$

1.4.
$$f(x) = 4\sin x$$
, $x_0 = \frac{\pi}{3}$.

1.5.
$$f(x) = \cos 5x$$
, $x_0 = \frac{\pi}{20}$

2. Записать уравнение касательной к графику функции y = f(x)в точке с абсциссой x_0

2.1.
$$f(x) = x^4 - x^3 + 5x - 2$$
, $x_0 = 0$.

2.2.
$$f(x) = x^3 + 3x$$
, $x_0 = 2$.

Самостоятельная работа №6 на тему: Исследование функции с помощью производной

Цель: Знать условия возрастания, убывания функции, точек максимума и минимума функции. Знать схему исследования функции и применять её при построении графика.

Признак возрастания функции: Если f'(x) > 0 в каждой точке некоторого промежутка, то на этом промежутке функция f(x) возрастает.

Признак убывания функции: Если f'(x) < 0 в каждой точке некоторого промежутка, то на этом промежутке функция f(x) убывает.

Признак максимума функции: Если функция f(x) непрерывна в точке x_0 , а f'(x) > 0 на интервале $(a; x_0)$ и f'(x) < 0 на интервале $(x_0; a)$, то x_0 является точкой максимума.

Упрощённая формулировка: Если в точке x_0 производная меняет знак с плюса на минус, то x_0 есть точка максимума.

Признак минимума функции: Если функция f(x) непрерывна в точке x_0 , а f'(x) < 0 на интервале $(a; x_0)$ и f'(x) > 0 на интервале $(x_0; a)$, то x_0 является точкой минимума

Упрощённая формулировка: Если в точке x_0 производная меняет знак с минуса на плюс, то x_0 есть точка максимума.

Схема исследования функции.

- Находим область определения;
- Вычисляем производную;
- Находим стационарные точки
- Определяем промежутки возрастания и убывания;
- Находим точки максимума и минимума;
- Вычисляем экстремум функции;
- Данные заносят в таблицу.

• На основании такого исследования строится график функции.

Решить самостоятельно:

Вариант 1

- І. Найти стационарные точки и промежутки возрастания и убывания
 - 1. $f(x) = 2x^2 1$
 - 2. $f(x) = -x^2 + 2x$
 - 3. $f(x) = x^3 + 2x^2$
 - 4. $f(x) = x^3 6x^2 + 9x 1$
- II. Найти экстремум функции
 - 1. $f(x) = 3x^2 2x$
 - 2. f(x) = cos2x
- III. Исследовать функцию и построить график

$$f(x) = x^3 - 3x^2 + 2$$

Вариант 2

- І. Найти стационарные точки и промежутки возрастания и убывания
 - 1. $f(x) = -x^2 + 1$
 - 2. $f(x) = x^2 4x$
 - 3. $f(x) = x^3 + 3x^2$
 - 4. $f(x) = 2x^3 3x^2 12x + 5$
- II. Найти экстремум функции
 - 1. $f(x) = 3x 5x^2$
 - 2. $f(x) = \sin 3x$
 - III. Исследовать функцию и построить график

$$f(x) = x^3 + 3x^2 - 1$$

Вариант 3

І. Найти стационарные точки и промежутки возрастания и убывания

1.
$$f(x) = -2x^2 + 32$$

2.
$$f(x) = x^2 - 4x$$

3.
$$f(x) = -x^3 + 6x^2$$

4.
$$f(x) = 2x^3 - 6x^2 - 18x + 4$$

II. Найти экстремум функции

1.
$$f(x) = 6x - x^3$$

2.
$$f(x) = x^2 \cdot \ell^x$$

III. Исследовать функцию и построить график

$$f(x) = -x^3 + 6x^2 + 2$$

Самостоятельная работа №7 на тему: Площадь криволинейной трапеции определённого интеграла

Цель: закрепить знания, умения и навыки нахождения площади криволинейной трапеции с помощью интеграла;

Теоретический материал

Определение: **Неопределенным интегралом** функции f(x) называется совокупность первообразных функций, которые определены соотношением: F(x) + C. Записывают: $\int f(x)dx = F(x) + C$, где F(x)- есть некоторая первообразная функции f(x) на этом промежутке, C – const. При этом знак \int называется знаком интеграла, f(x) – подынтегральной функцией, f(x)dx – подынтегральным выражением, x – переменная интегрирования, x С-постоянная интегрирования.

Операция нахождения неопределенного интеграла от данной функции называется интегрированием данной функции.

Интегрирование — операция, обратная операции дифференцирования. У всякой непрерывной на данном интервале функции существует неопределенный интеграл.

Таблица неопределенных интегралов

$$\int dx = x + C \qquad \int \sin x dx = -\cos x + C \qquad \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arct} g \frac{x}{a} + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \int \cos x dx = \sin x + C \qquad \int t g x dx = -\ln|\cos x| + C$$

$$\int \frac{dx}{x} = \ln|x| + C \qquad \int \frac{dx}{\sin^2 x} = -\operatorname{ct} g x + C \qquad \int \operatorname{ct} g x dx = \ln|x| + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C \qquad \int \frac{dx}{\cos^2 x} = t g x + c \qquad \int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{arcsin} \frac{x}{a} + C$$

$$\int \ell^x dx = \ell^x + C \qquad \int \frac{dx}{1 + x^2} = \operatorname{arct} g x + C \qquad \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

Свойства неопределенного интеграла:

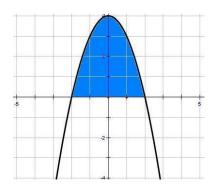
$$\int dF(x) = F(x) + C;$$

$$\int kf(x)dx = k \int f(x)dx;$$

$$\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx;$$

$$\int f(ax + b)dx = \frac{1}{a}F(ax + b) + C;$$

Определение: Фигура, ограниченная снизу отрезком [a, b] оси Ох ,сверху графиком непрерывной функции y=f(x), принимающей положительные значения, а с боков отрезками прямых x=a, x=b называется криволинейной трапецией.



$$S = \int_a^b f(x) dx = F(x) \Big|_a^b = F(b) - F(a).$$

Образец решения:

Вычислить площадь криволинейной трапеции, ограниченной линиями

$$y = 4 - x^2 u y = 0$$

Решение:

1. $y = 4 - x^2$ - квадратичная функция, график — парабола, ветви направлены вниз, вершина (0;4)

у = 0 - ось абсцисс.

2. Найдём точки пересечения параболы с осью X: $x^2 - 4 = 0$;

$$x^2 = 4$$
, $x = 2$, $x = -2$.

3. Найдём площадь криволинейной трапеции по формуле:

$$S = \int_{-2}^{2} (4 - x^2) dx = \left(4x - \frac{x^3}{3} \right) \Big|_{-2}^{2} = \left(4 \cdot 2 - \frac{2^3}{3} \right) - \left(4 \cdot (-2) - \frac{(-2)^3}{3} \right) =$$

$$=8-\frac{8}{3}+8-\frac{8}{3}=16-\frac{16}{3}=16-5\frac{1}{3}=10\frac{2}{3}$$
 (ед.²)

Решить самостоятельно:

Вариант 1

1. Найти площадь фигуры, ограниченной линиями:

$$1.1 f(x) = 16 - x^2, \ f(x) = 0.$$

1.2.
$$f(x) = 1 + x^2$$
, $y = 2$.

1.3.
$$f(x) = (x-1)^2$$
, $y = 0$, $x = 3$.

1.4.
$$f(x) = 5\cos x$$
, $f(x) = 3\cos x$.

1.5.
$$f(x) = x^2 + 2$$
, $f(x) = 3x + 2$.

Вариант 2

1. Найти площадь фигуры, ограниченной линиями:

1.1.
$$f(x) = 9 - x^2$$
, $f(x) = 0$.

1.2.
$$f(x) = 3 + x^2$$
, $y = 4$

1.3.
$$f(x) = (x-2)^2$$
, $y = 0$, $x = 3$.

1.4.
$$f(x) = 5\sin x$$
, $f(x) = 3\sin x$.

1.5.
$$f(x) = x^2 + 3$$
, $f(x) = 2x + 3$.

Самостоятельная работа №8 на тему: Ученые, которые внесли особый вклад в развитие геометрии.

Цель: расширить кругозор и познакомить с историей развития геометрии через биографию ученых, которые внесли вклад в развитие данной науки.

Задание для учащихся. Написать сообщение на заданную тему.

Сообщение — это сокращенная запись информации, в которой должны быть отражены основные положения текста, сопровождающиеся аргументами, 1—2 самыми яркими и в то же время краткими примерами.

Сообщение составляется по нескольким источникам, связанным между собой одной темой. Вначале изучается тот источник, в котором данная тема изложена наиболее полно и на современном уровне научных и практических достижений. Записанное сообщение дополняется материалом других источников.

Этапы подготовки сообщения:

- 1. Прочитайте текст.
- 2. Составьте его развернутый план.
- 3. Подумайте, какие части можно сократить так, чтобы содержание было понято правильно и, главное, не исчезло.
- 4. Объедините близкие по смыслу части.
- 5. В каждой части выделите главное и второстепенное, которое может быть сокращено при конспектировании.
- 6. При записи старайтесь сложные предложения заменить простыми.

Тематическое и смысловое единство сообщения выражается в том, что все его компоненты связаны с темой первоисточника.

Сообщение должно содержать информацию на 3-5 мин. и сопровождаться презентацией, схемами, рисунками, таблицами и т.д.

Выполнить самостоятельно:

Написать сообщение на тему: «Математики - известные ученые» (на выбор).

- 1. Пифагор;
- 2. Архимед;
- 3. Фалес Милетский;
- Платон;
- 5. Евклид;
- 6. Эратосфен;
- 7. Демокрит;
- 8. Апполоний;
- 9. Рене Декарт
- 10.Б. Риман;
- 11.Д. Гильберд;
- 12. Паскаль;
- 13. Дезарк;
- 14.К. Гаус.

Самостоятельная работа №9 на тему: Многогранники и их поверхности

Цель: Знать формулы вычисления площади боковой и полной поверхности призмы, пирамиды, параллелепипеда и уметь применять их к решению задач.

Теоретический материал

Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников.

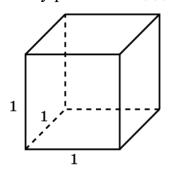
Основные формулы

№п/п	Наименование	Изображение	Площадь боковой и
	многогранника		полной поверхности
1	Куб		$S_{\pi} = 6a^2$
2	Прямоугольный параллелепипед		$S_{\pi} = 2ab + 2ac + 2ac$
3	Призма		$S_6 = p \cdot H$ $S_{\pi} = S_6 + 2S_o$
4	Пирамида	S S D	$S_{6} = \frac{1}{2} p \cdot h$ $S_{\pi} = S_{6} + S_{o}$

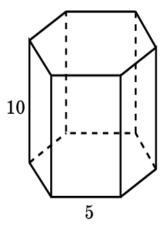
Решить самостоятельно.

Вариант 1

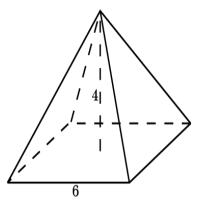
1. Чему равна площадь поверхности куба с ребром 1?



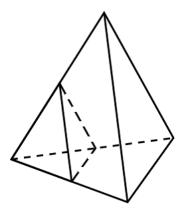
2. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5 см, а высота 10 см.



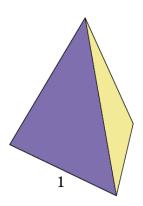
3. Найдите площадь боковой поверхности правильной четырёхугольной пирамиды, сторона основания которой равна 6 см и высота 4 см.



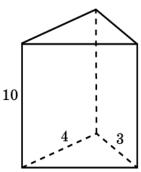
4. Как изменятся площади боковой и полной поверхностей пирамиды, если все её рёбра: а) увеличить в 2 раза; б) уменьшить в 5 раз?



5. Чему равна площадь поверхности правильного тетраэдра с ребром 1?

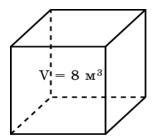


6. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 см и 4 см, высота призмы равна 10 см. Найдите площадь поверхности данной призмы.

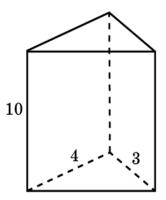


Вариант 2

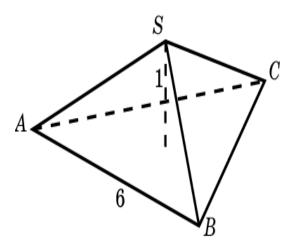
1. Объем куба равен 8 м^3 . Найдите площадь его поверхности.



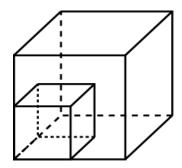
2. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 см и 4 см, высота призмы равна 10 см. Найдите площадь поверхности данной призмы.



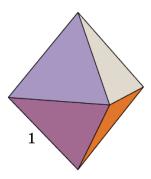
3. Найдите площадь боковой поверхности правильной треугольной пирамиды со стороной основания 6 см и высотой 1 см.



4. Как изменится площадь поверхности куба, если каждое его ребро увеличить в: а) 2 раза; б) 3 раза; в) *n* раз?



5. Чему равна площадь поверхности октаэдра с ребром 1?



6. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями 6 см и 8 см и боковым ребром 10 см.

