МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

Фонды оценочных средств по дисциплине «Теория алгоритмов»

Направление подготовки 09.02.03 Программирование в компьютерных системах

1. Формируемые дисциплиной компетенции

- OK.1 Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес
- OK.2 Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество
- OK.3 Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность
- OK.4 Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития
- OK.5 Использовать информационно-коммуникационные технологии в профессиональной деятельности
- OK.6 Работать в коллективе и команде, эффективно общаться с коллегами, руководством,потребителями
- ОК.7 Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий
- OK.8 Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации
- OK.9 Ориентироваться в условиях частой смены технологий в профессиональной деятельности
 - ПК.1.1 Выполнять разработку спецификаций отдельных компонент
- ПК.1.2 Осуществлять разработку кода программного продукта на основе готовых спецификаций на уровне модуля.

2. Планируемые результаты обучения

Коды компетенций	Планируемый результат
OK 1	Знать методы построения алгоритмов, понимая важность этого в сущности и социальной значимости своей будущей профессии
OK 2	Знать: типовые методы и способы выполнения разработки алгоритма. Уметь: самостоятельно определять порядок своей деятельности, оценить эффективность построенного алгоритма.
OK 3	Принимать решения в ситуациях разработки алгоритмов для стандартных и нестандартных задач
OK 4	Осуществлять поиск и использование информации, необходимой для эффективной разработки алгоритмов
OK 5	Знать: основные модели алгоритмов и методику их реализации. Уметь: использовать ИКТ для получения информации о реализациях разных моделей алгоритмах.
OK 6	Знать: методы разработки алгоритмов, Уметь: работать в команде при разработке алгоритмов для конкретных задач,поставленных руководством или потребителями.
OK 7	Знать: методы разработки алгоритмов для конкретных задач. Уметь: распределять ответственность на членов команды, может взять на себя ответственность за результат.
OK 8	Самостоятельно определять задачи профессионального и личностного развития, необходимые для познания методов построения алгоритмов
OK 9	Знать методы построения алгоритмов, ориентируясь в условиях частой

	смены технологий в профессиональной деятельности
	Знать: методы разработки алгоритмов для конкретных задач.
	Уметь: распределять ответственность на членов команды, может взять
ПК 1.1	на себя ответственность за результат.
	Выполнять разработку спецификаций отдельных компонент на основе
	знаний методов вычисления сложности работы алгоритмов
ПК 1.2	Осуществлять разработку программного кода продукта на основе
	знаний основных моделей алгоритмов

3. Спецификация теста

Тест по дисциплине «Теория алгоритмов» состоит из 20 заданий. Рекомендованное время решения теста испытуемым — 30 минут. Верно решенное задание оценивается в 1 балл, максимальный балл за верное выполнение всех заданий теста — 20 баллов. Минимальный проходной балл — 9, что соответствует минимальному порогу для выставления отметки «удовлетворительно».

Схема конвертации баллов в отметки:

0-8 баллов - «неудовлетворительно»

9-12 баллов – «удовлетворительно»

13-16 баллов – «хорошо»

17-20 баллов – «отлично»

Структура теста:

Наименование раздела/темы	Планируемый результат	Количество заданий в тесте
Нормальные алгоритмы Маркова	Уметь разрабатывать нормальные алгоритмы Маркова для конкретных задач.	5
	Знать понятие марковской подстановки и методы построения нормальных алгоритмов Маркова.	
Рекурсивные функции. Тезис Черча	Знать и уметь совмещать операторы подстановки, примитивной рекурсии, минимизации для решения конкретной задачи.	4
Машина Тьюринга	Уметь разрабатывать Машины Тьюринга для конкретных задач.	5
Понятие алгоритма и общие вопросы теории алгоритмов	Знать методы построения Машин Тьюринга. Уметь оценивать ёмкостную и временную сложность машин Тьюринга и алгоритмов другого вида.	6
	Знать об исполнителях алгоритмов,	

понятиях алгоритмическая разрешимость и	
алгоритмическая неразрешимость.	
Знать определение перечислимых множеств	
и о проблеме перечислимости.	

Тест по дисциплине «Теория алгоритмов», вариант 1.

1. Пусть имеется алфавит {a, b, c} . Подслово ас имеет вхождение в слово a) ccabacb б) cca в) babca r) bbabcca	7. В процессе применения оператора минимизации к функции количество её переменных а) может уменьшиться на 1 б) всегда увеличивается на 1 в) может увеличиться на 2 г) всегда уменьшается на 2
2. Элемент алфавита называется а) буквой б) строкой в) программой г) функцией	8. Функция «выбор аргумента» а) дает случайное число б) дает значение 0 в) дает число, следующее за аргументом г) дает число, равное одному из аргументов
 3. Подстановка ? → b обозначает а) замена символа b на символ ? б) «перепрыгивание» символа ? через символ b в) «перепрыгивание» символа b через символ ? г) замена символа ? на символ b 	9. Пусть f(a) = 5a+1, g(b) = ctg(b). Тогда композиция функций g(f(a)) = ctg(5a+1) называется а) подставной функцией 6) суперпозицией в) минимизацией г) примитивной рекурсией
4. Дан алфавит $\{a,b\}$. Программа: $aa \to a$, $bb \to b$. Входное слово: aaabbbaaabbb. Каково итоговое слово? a) abab б) ab в) пустое слово r) входное слово не измениться	10. Находясь на ленте, головка за один шаг не может а) сдвинуться на две клетки влево б) сдвинуться на одну клетку вправо в) остаться на месте г) заменить содержимое обозреваемой ячейки
 5. Дан алфавит {x, y, z}. Программа: z ⇒ zz, y ⇒ yy, x ⇒ xx, (⇒ завершающая подстановка). Что делает программа? а) удваивает последний символ слова б) удваивает случайный символ слова в) удваивает все символы слова г) удваивает первый символ слова 	11. Установите соответствие. Укажите одну правильную пару А) q1 1) Пустой символ Б) а0 2) Начальное состояние В) qк 3) Стоп-состояние Г) q0 Д) а1 Е) Л а) А-3 6) В-3 в) Г-1 г) Д-2
6. Значение функции S(3) (где S(x) – функция следующее число) а) 5 б) 8 в) 4 г) 0	12. Особенностью нулевого (начального) состояния при создании таблицы переходов является а) невозможность создания цикла с использование нулевого состояния б) возможность обратиться к нему из конечного состояния в) возможность создания цикла с использованием нулевого состояния г) отсутствие собственного столбца/строки

Для № 13-14. Дана таблица переходов некоторой Машины Тьюринга:

	a	b '	c	Λ	=
q_0				$\wedge q_1R$	
q_1	a q ₁ R	b q ₁ R	c q ₁ R	$= q_2L$	
q_2	a q ₂ L	b q ₂ L	c q ₂ L	$\wedge q_3R$	$= q_2L$
q_3	$\wedge q_3R$	$\wedge q_4R$	$\wedge q_5R$		$\wedge q_k R$
q_4	a q ₄ R	b q ₄ R	c q ₄ R	b q ₂ S	$= q_4 R$
q_5	a q ₅ R	b q ₅ R	c q ₅ R	c q ₂ S	$= q_5 R$

- 13. Каково содержимое начальной ячейки, 14. Головка находиться в состоянии q3 и чтобы программа начала работать?
- а) Λ пустой символ
- б) а
- в) b
- г) с

- обозревает ячейку с содержимым «b». Что не случиться?
- а) заменяет содержимое на пустой символ
- б) переходит в состояние q5
- в) делает шаг направо
- г) переходит в состояние q4
- 15. Множество называется перечислимым, если 18. существует алгоритм, позволяющий
- а) подсчитать число его элементов
- б) перечислить (пронумеровать) все элементы
- определить, принадлежит произвольный элемент этому множеству
- определить, является бесконечным или нет.
- Дано описание алгоритма и входные данные. Можно ли, не запуская программу определить, остановиться вычисления, его программа или нет?
 - а) в зависимости от структуры алгоритма
- нет б) в некоторых случаях, да
 - в) в некоторых случаях, нет
- множество г) в зависимости от входных данных
- одинаковых входных данных, решающие одну если он создан для решения и туже задачу, было определено, что у второго а) одной конкретной проблемы алгоритма время выполнения И задействованной памяти меньше. сделать вывод, что
- а) первый алгоритм понятнее второго
- б) второй алгоритм понятнее первого
- в) первый алгоритм эффективней второго
- г) второй алгоритм эффективней первого
- 17. Видом сложности алгоритмов является:
- а) структурная
- б) порядковая
- в) входная
- г) выходная

- 16. При сравнении работы двух алгоритмов на 19. Алгоритм обладает свойством массовости,

 - объем б) класса задач, общие в решении и отличными Можно выходными данными
 - в) класса разнообразных задач
 - г) алгоритмически неразрешимой задачи
 - 20. Свойство алгоритма записываться в виде упорядоченной совокупности отделенных друг от друга предписаний (директив)
 - а) понятность
 - б) определенность
 - в) дискретность
 - г) массовость

Тест по дисциплине «Теория алгоритмов», вариант 2.

1. Пусть имеется алфавит {a, b, c} . Подслово bc имеет вхождение в слово a) ccabacb б) cca в) babca r) bacbbaa	7. В процессе применения оператора минимизации к функции количество её переменных а) всегда увеличивается на 1 б) всегда уменьшается на 2 в) может уменьшиться на 1 г) может увеличиться на 2
2. Элемент алфавита называетсяа) строкойб) символомв) программойг) функцией	8. Функция «следующее число» а) дает случайное число б) дает число, следующее за аргументом в) дает число, равное одному из аргументов г) всегда дает значение 0
 3. Подстановка b → ? обозначает а) замена символа b на символ ? б) «перепрыгивание» символа ? через символ b в) «перепрыгивание» символа b через символ ? г) замена символа ? на символ b 	9. Пусть f(x) = 2a-3, g(b) = tg(b). Тогда композиция функций g(f(a)) = tg(2a-3) называется a) подставной функцией б) примитивной рекурсией в) суперпозицией г) минимизацией
4. Дан алфавит $\{a, b\}$. Программа: $aa \rightarrow a$, $bb \rightarrow b$. Входное слово: bbbaaabbbaaa. Каково итоговое слово? a) ba b 0 пустое слово b 1 входное слово b 3 входное слово не измениться	10. Находясь на ленте, головка за один шаг <u>не</u> может а) сдвинуться на одну клетку вправо б) остаться на месте в) сдвинуться на две клетки вправо г) заменить содержимое обозреваемой ячейки
г) baba 5. Дан алфавит {x, y, z}. Программа: x ⇒ xx, y ⇒ yy, z ⇒ zz, (⇒ завершающая подстановка). Что делает программа? a) удваивает последний символ слова б) удваивает все символы слова в) удваивает первый символ слова г) удваивает случайный символ слова	11. Установите соответствие. Укажите верную пару А) qк 1) Пустой символ Б) Л 2) Начальное состояние В) q1 3) Стоп-состояние Г) a1 Д) q0 E) a0 а) Б-3 б) Г-1 в) Д-2
6. Значение функции S(4) (где S(x) — функция следующее число) а) 5 б) 4 в) 3 г) 0	в) д-2 г) В-1 12. Особенностью нулевого (начального) состояния при создании таблицы переходов является а) возможность обратиться к нему из конечного состояния б) возможность создания цикла с использованием нулевого состояния в) отсутствие собственного столбца/строки г) невозможность обратиться к нему из других

состояний

TT NT 40 44 TT	_		U 3.6	T
Для № 13-14. Да	ана таблина пе	ιρέχοποι μεκότοι	пои Машины	Тъюринга
——————————————————————————————————————	arra raoviriquira	Periogod Heriotol	JOIL IVIGIDITIES	I DIOPINII a.

	a	b b	c	Λ	=
q_0				$\wedge q_1R$	
q_1	a q ₁ R	b q ₁ R	c q ₁ R	$= q_2L$	
q_2	a q ₂ L	b q ₂ L	c q ₂ L	$\wedge q_3R$	$= q_2L$
q_3	$\wedge q_3R$	$\wedge q_4R$	$\wedge q_5R$		$\wedge q_k R$
q ₄	a q ₄ R	b q ₄ R	c q ₄ R	b q ₂ S	$= q_4 R$
q_5	a q ₅ R	b q ₅ R	c q ₅ R	c q ₂ S	$= q_5 R$

- 13. Каково содержимое ячейки, на которой программа заканчивает работать?
- a) =
- б) Λ пустой символ
- в) а
- г) с
- 15. Множество называется перечислимым, если существует алгоритм, позволяющий
- а) подсчитать число его элементов
- б) определить, принадлежит или нет произвольный элемент этому множеству
- в) пронумеровать (перечислить) все его элементы
- r) определить, является ли множество бесконечным или нет.
- 16. При сравнении работы двух алгоритмов на одинаковых входных данных, решающие одну и туже задачу, было определено, что у первого алгоритма объем задействованной памяти больше. Можно сделать вывод, что
- а) первый алгоритм эффективней второго
- б) второй алгоритм понятнее первого
- в) второй алгоритм эффективней первого
- г) первый алгоритм понятнее второго
- 17. Видом сложности алгоритмов является:
- а) порядковая
- б) входная
- в) временная
- г) выходная

- 14. Головка находиться в состоянии q3 и обозревает ячейку с содержимым «b». Что не случиться?
- а) заменяет содержимое на пустой символ
- б) остается в состоянии q3
- в) переходит в состояние q4
- г) делает шаг направо
- 18. Дано описание алгоритма и входные данные. Можно ли, не запуская программу вычисления, определить, остановиться ли программа или нет?
- а) в зависимости от входных данных
- б) в зависимости от структуры алгоритма
- в) в общем случае, нет
- г) в некоторых случаях, нет
- 19. Алгоритм создан для решения класса задач, общие в решении и отличными выходными данными. Значит, он
- а) обладает свойством массовости
- б) решил алгоритмически неразрешимую задачу
- в) является конечным
- г) обладает свойством дискретности
- 20. Свойство алгоритма записываться только директивами однозначно и одинаково интерпретируемыми разными исполнителями
- а) определенность
- б) детерминированность
- в) понятность
- г) результативность

Тест по дисциплине «Теория алгоритмов», вариант 3.

 Пусть имеется алфавит {a, b, c}. Подслово са имеет вхождение в слово а) сссbасb б) ассbbа в) babcba г) bbabcca 	7. В процессе применения оператора минимизации к функции количество её переменных а) всегда увеличивается на 2 б) всегда уменьшается на 2 в) может увеличиться на 1 г) может уменьшиться на 1
2. Элемент алфавита называется а) строкой б) функцией в) буквой г) программой	8. Функция «выбор аргумента» а) дает число, равное одному из аргументов б) дает случайное число в) дает число, следующее за аргументом г) дает значение 0
3. Подстановка! → а обозначает а) «перепрыгивание» символа! через символ а б) «перепрыгивание» символа а через символ! в) замена символа а на символ! г) замена символа! на символ а	9. Пусть f(x) = x+14, g(y) = cos(y). Тогда композиция функций g(f(x)) = cos(x+14) называется a) примитивной рекурсией б) минимизацией в) подставной функцией г) суперпозицией
4. Дан алфавит $\{a,b\}$. Программа: $aa \to a$, $bb \to b$. Входное слово: aaabbbaaa. Каково итоговое слово? a) пустое слово б) aba в) ab г) входное слово не измениться	10. Находясь на ленте, головка за один шаг не может а) остаться на месте б) заменить содержимое обозреваемой ячейки в) сдвинуться на три клетки влево г) сдвинуться на одну клетку вправо
 5. Дан алфавит {a, b, c}. Программа: c ⇒ cc, b ⇒ bb, a ⇒ aa, (⇒ завершающая подстановка). Что делает программа? a) удваивает первый символ слова б) удваивает последний символ слова в) удваивает все символы слова г) удваивает случайный символ слова 	11. Установите соответствие. Укажите верную пару. A) q0 1) Пустой символ Б) qк 2) Начальное состояние В) q1 3) Стоп-состояние Г) a1 Д) a0 E) Λ a) Б-3 б) Γ -2
6. Введите значение функции S(1) (где S(x) – функция следующее число) а) 0 б) 2 в) 1 г) 5	в) Е-3 г) А-1 12. Особенностью нулевого (начального) состояния при создании таблицы переходов является а) отсутствие собственного столбца/строки б) возможность обратиться к нему из конечного состояния в) невозможность создания цикла с использование нулевого состояния г) возможность создания цикла с

использованием нулевого состояния

Для № 13-14. Дана таблица переходов некоторой Машины Тьюринга.

	a	b	c	Λ	=
q_0				$\wedge q_1R$	
q_1	a q ₁ R	b q ₁ R	c q ₁ R	$= q_2L$	
q_2	a q ₂ L	b q ₂ L	c q ₂ L	$\wedge q_3R$	$= q_2L$
q_3	$\wedge q_3R$	$\wedge q_4R$	$\wedge q_5R$		$\wedge q_k R$
q ₄	a q ₄ R	b q ₄ R	c q ₄ R	b q ₂ S	$= q_4R$
q 5	a q ₅ R	b q ₅ R	c q ₅ R	c q ₂ S	$= q_5 R$

- 13. Каково содержимое начальной ячейки, чтобы программа начала работать?
- a) =
- б) а
- в) Λ пустой символ
- г) b
- 15. Множество называется разрешимым, если существует алгоритм, позволяющий
- а) подсчитать число его элементов
- б) перечислить (пронумеровать) все его элементы
- в) разрешить вопрос, принадлежит или нет произвольный элемент этому множеству
- г) определить, является ли множество бесконечным или нет
- 16. При сравнении работы двух алгоритмов на одинаковых входных данных, решающие одну и туже задачу, было определено, что у первого алгоритма время. Можно сделать вывод, что
- а) первый алгоритм понятнее второго
- б) первый алгоритм эффективней второго
- в) второй алгоритм эффективней первого
- г) второй алгоритм понятнее первого
- 17. Видом сложности алгоритмов является:
- а) порядковая
- б) входная
- в) выходная
- г) емкостная

- 14. Головка находиться в состоянии q3 и обозревает ячейку с содержимым «b». Что не случиться?
- а) делает шаг налево
- б) заменяет содержимое на пустой символ
- в) переходит в состояние q4
- г) делает шаг направо
- 18. Дано описание алгоритма и входные данные. Можно ли, не запуская программу вычисления, определить, остановиться ли программа или нет?
- а) в зависимости от структуры алгоритма
- б) в общем случае, да
- в) в зависимости от входных данных
- г) в некоторых случаях, да
- 19. Алгоритм <u>не</u> обладает свойством массовости, если он создан для решения
- а) одной конкретной проблемы
- б) класса задач, общие в решении и отличными выходными данными
- в) класса разнообразных задач
- г) алгоритмически неразрешимой задачи
- 20. Свойство алгоритма, что при точном исполнении всех предписаний процесс должен прекратиться за конечное число шагов с определенным ответом на поставленную задачу
- а) понятность
- б) детерминированность
- в) дискретность
- г) результативность

Тест по дисциплине «Теория алгоритмов», вариант 4.

1. Пусть имеется алфавит {a, b, c} . Подслово ba имеет вхождение в слово a) ccabcb б) ccbac в) cbbca r) abcbbcca	7. В процессе применения оператора минимизации к функции количество её переменных а) может уменьшиться на 1 б) всегда увеличивается на 1 в) всегда уменьшается на 2 г) может увеличиться на 2
2. Элемент алфавита называется а) программой б) кнопкой в) символом г) функцией	8. Функция «тождественный ноль» а) дает случайное число б) всегда дает значение 0 в) дает число, равное одному из аргументов г) дает число, следующее за аргументом
3. Подстановка а → ! обозначает а) «перепрыгивание» символа ! через символ а б) «перепрыгивание» символа а через символ ! в) замена символа а на символ ! г) замена символа ! на символ а	9. Пусть f(x) = 2x+1, g(y) = sin(y). Тогда композиция функций g(f(x)) = sin(2x+1) называется а) суперпозицией б) примитивной рекурсией в) минимизацией г) подставной функцией
4. Дан алфавит $\{a,b\}$. Программа: $aa \to a$, $bb \to b$. Входное слово: bbbbaaabbbaaabbb. Каково итоговое слово? a) входное слово не измениться b 0 пустое слово b 3 babab b 4 babab b 7 ba	10. Находясь на ленте, головка за один шаг не может а) сдвинуться на одну клетку вправо б) остаться на месте в) сдвинуться на три клетки вправо г) заменить содержимое обозреваемой ячейки
 5. Дан алфавит {a, b, c}. Программа: a ⇒ aa, b ⇒ bb, c ⇒ cc. (⇒ завершающая подстановка). Что делает программа? a) удваивает первый символ слова б) удваивает последний символ слова в) удваивает все символы слова г) удваивает случайный символ слова 	11. Установите соответствие. Укажите верную пару. А) а0 1) Пустой символ Б) qк 2) Начальное состояние В) q0 3) Стоп-состояние Г) а1 Д) Л Е) q1 а) Д-2 б) Г-1 в) Е-3
6. Введите значение функции S(7) (где S(x) – функция следующее число) а) 7 б) 16 в) 8 г) 6	г) В-3 12. Особенностью нулевого (начального) состояния при создании таблицы переходов является а) отсутствие собственного столбца/строки б) невозможность обратиться к нему из других состояний в) возможность создания цикла с использованием нулевого состояния

г) возможность обратиться к нему из конечного

состояния

Л	[ля № 13-14.	Пана	таблиц	а пе	nexoπ	OR I	некотог	ากหั	Машины	Тью	пинга
\sim	Λιν ιν τΩ-τ 4 .	дапа	таолиц	a ne	релод	UD I	nckorol	JUN	матип	I DIO	prini a.

	a	b	c	Λ	=
q_0				$\wedge q_1R$	
q_1	a q ₁ R	b q ₁ R	c q ₁ R	$= q_2L$	
q_2	a q ₂ L	b q ₂ L	c q ₂ L	$\wedge q_3R$	$= q_2L$
q_3	$\wedge q_3R$	$\wedge q_4R$	$\wedge q_5R$		$\wedge q_k R$
q ₄	a q ₄ R	b q ₄ R	c q ₄ R	b q ₂ S	$= q_4R$
q 5	a q ₅ R	b q ₅ R	c q ₅ R	c q ₂ S	$= q_5 R$

- 13. Каково содержимое ячейки, на которой программа заканчивает работать?
- a) c
- б) =
- в) Λ пустой символ
- г) b
- 15. Множество называется разрешимым, если существует алгоритм, позволяющий
- a) разрешить вопрос, принадлежит ли произвольный элемент этому множеству
- б) подсчитать число его элементов
- в) перечислить (пронумеровать) все его элементы
- г) определить, является ли множество бесконечным или нет.
- 16. При сравнении работы двух алгоритмов на одинаковых входных данных, решающие одну и туже задачу, было определено, что у первого алгоритма время выполнения и объем задействованной памяти меньше. Можно сделать вывод, что
- а) первый алгоритм эффективней второго
- б) второй алгоритм эффективней первого
- в) первый алгоритм понятнее второго
- г) второй алгоритм понятнее первого
- 17. Видом сложности алгоритмов не является:
- а) временная
- б) емкостная
- в) структурная
- г) порядковая

- 14. Головка находиться в состоянии q3 и обозревает ячейку с содержимым «b». Что не случиться?
- а) заменяет содержимое на пустой символ
- б) переходит в состояние q4
- в) делает шаг направо
- г) остается в состоянии q3
- 18. Дано описание алгоритма и входные данные. Можно ли, не запуская программу вычисления, определить, остановиться ли программа или нет?
- а) в общем случае, нет
- б) в зависимости от структуры алгоритма
- в) в общем случае, да
- г) в зависимости от входных данных
- 19. Если нельзя создать алгоритм для решения одной конкретной проблемы, то эта проблема
- а) представитель класса задач, общие в решении и отличными выходными данными
- б) из класса разнородных PN-задач
- в) алгоритмически неразрешимая задача
- г) алгоритмически недоказуемая задача
- 20. Свойство алгоритма обеспечения решения не одной задачи, а целого класса задач этого типа
- а) понятность
- б) определенность
- в) дискретность
- г) массовость

Ключ к тесту

Вариант 1	Вариант 2	Вариант 3	Вариант 4
1 a	1 в	1г	1 б
2 a	2 б	2 в	2 в
3г	3 a	3г	3 в
4 a	4 г	4 б	4 в
5г	5 в	5 a	5 a
6 в	6 a	6 б	6 в
7 a	7 в	7 г	7 a
8 г	8 б	8 a	8 б
9 б	9 в	9г	9 a
10 a	10 в	10 в	10 в
11 б	11 в	11 a	11 г
12 a	12 г	12 в	12 б
13 a	13 a	13 в	13 б
14 б	14 б	14 a	14 г
15 б	15 в	15 в	15 a
16 г	16 в	16 б	16 a
17 a	17 в	17 г	17 г
18 б	18 в	18 г	18 a
19 б	19 a	19 a	19 в
20 в	20 б	20 г	20 г