МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра аналитической химии и экспертизы

Авторы-составители: Ельчищева Юлия Борисовна

Рабочая программа дисциплины

СПЕКТРОФОТОМЕТРИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Код УМК 86146

Утверждено Протокол №4 от «20» мая 2020 г.

1. Наименование дисциплины

Спектрофотометрические методы анализа

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « М.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 04.04.01 Химия

направленность Аналитическая химия

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Спектрофотометрические методы анализа у обучающегося должны быть сформированы следующие компетенции:

04.04.01 Химия (направленность : Аналитическая химия)

ПК.2 Способен планировать работу и выбирать методы решения поставленных задач в выбранной области химии, химической технологии или смежных с химией науках

Индикаторы

ПК.2.2 Выбирает экспериментальные и расчетно-теоретические методы решения поставленной задачи исходя из имеющихся материальных и временных ресурсов, готовит объекты, оборудование и реактивы исследования

4. Объем и содержание дисциплины

Направления подготовки	04.04.01 Химия (направленность: Аналитическая химия)
форма обучения	очная
№№ триместров,	4
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	4
Объем дисциплины (ак.час.)	144
Контактная работа с	48
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	12
занятий	
Проведение практических	12
занятий, семинаров	
Проведение лабораторных	24
работ, занятий по	
иностранному языку	
Самостоятельная работа	96
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Защищаемое контрольное мероприятие (1)
	Итоговое контрольное мероприятие (1)
	Письменное контрольное мероприятие (2)
Формы промежуточной	Экзамен (4 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Спектрофотометрические методы анализа. Первый семестр

Входной контроль

Входной контроль проверяет знания студента оптических методов анализа: теоретические основы фотометрического метода анализа; способы выражения концентраций в аналитической химии; методы определения концентраций в фотометрии. Входное тестирование также включает умения студента правильно интерпретировать графические зависимости и делать по ним корректные выводы. А также правильно выбирать методы определения концентраций; грамотно использовать расчетные формулы.

Раздел 1. Теоретические основы спектрофотометрического анализа

В лекции рассмотрены основные фотометрические величины-оптическая плот-ность, прозрачность (пропускание), молярный коэффициент светопоглощения (), его физический смысл, значение. Материал лекции содержит понятие фотометрических реакций, необходимость их использования, требования к ним, условия их проведения. Рассмотрено влияние концентрации ионов водорода на фотометрическое определение.

Законы и избирательность светопоглощения. Фотометрические реакции

Лекция содержит следующие материалы: классификацию оптических методов, взаимо-действие вещества с электромагнитным излучением, понятие спектра поглощения; понятие об органических и неорганических хромофорах, ауксохромах, батохромный и гипсохромный сдви-ги (на конкретных примерах). В лекции рассмотрены законы поглощения, закон аддитивности, физические и химические отклонения от закона Бугера-Ламберта-Бера. Даны примеры химиче-ских отклонений.

Типы электронных переходов. Характер электронных спектров поглощения. Влияние строения и среды на УФ-спектры поглощения

Лекция содержит следующие материалы: классификацию оптических методов, взаимо-действие вещества с электромагнитным излучением, понятие спектра поглощения; понятие об органических и неорганических хромофорах, ауксохромах, батохромный и гипсохромный сдви-ги (на конкретных примерах). В лекции рассмотрены законы поглощения, закон аддитивности, физические и химические отклонения от закона Бугера-Ламберта-Бера. Даны примеры химиче-ских отклонений.

Раздел 2. Аппаратурное оформление спектрофотометрического анализа

Лекция содержит следующие материалы: преимущество работы с монохромати-ческим излучением, краткие сведения о визуальных методах анализа. Детально рас-смотрены фотоэлектрические методы: принципиальная схема фотометрического при-бора, характеристика отдельных блоков, фотоэлектроколориметры, спектрофотомет-ры.

В лекции описана общая характеристика экстракционно-фотометрических методов ана-лиза, двухволновой и производной спектрофотометрии. Лекция содержит спектрофотометриче-ский анализ по спектрам отражения, фотометрическое титрование с индикатором и без него (конкретные примеры).

Раздел 3. Получение "окрашенных соединений " и использование их в количественном спектрофотометрическом анализе

Материал лекции посвящён детальному рассмотрению типов поглощающих систем на примере классификации Бабко.

Типы фотометрируемых систем

Материал лекции посвящён детальному рассмотрению типов поглощающих систем на примере

классификации Бабко.

Влияние посторонних ионов на фотометрические измерения и методы его устранения

В лекции обсуждаются способы устранения мешающего влияния посторонних ионов: разделение и концентрирование; химические методы без отделения (маскирование и изменение степени окисления); специальные приёмы фотометрических измерений. Особое внимание уде-лено экстракционно-фотометрическому методу анализа и маскированию мешающих ионов.

Раздел 4. Спектрофотометрические методы количественного анализа

Материал лекции содержит подробное описание абсолютных методов анализа, их преимущества и недостатки: метод сравнения, расчёт по , метод градуировочного графика, метод добавок. Лекция рассматривает прямой и обратный порядок измерений дифференциального метода, возможности двухстороннего (полного) дифференцирования. Описываются графические и расчётные способы определения концентрации этими методами. Рассматривается анализ много-компонентных систем. Описаны конкретные примеры типов многокомпонентных систем. Лек-ция описывает возможные ошибки фотометрических определений.

В лекции описана общая характеристика экстракционно-фотометрических методов ана-лиза, двухволновой и производной спектрофотометрии. Лекция содержит спектрофотометриче-ский анализ по спектрам отражения, фотометрическое титрование с индикатором и без него (конкретные примеры).

Абсолютные и дифференциальные методы определения концентрации (в отсутствии мешающих компонентов)

Материал лекции содержит подробное описание абсолютных методов анализа, их преимущества и недостатки: метод сравнения, расчёт по , метод градуировочного графика, метод добавок. Лекция рассматривает прямой и обратный порядок измерений дифференциального метода, возможности двухстороннего (полного) дифференцирования. Описываются графические и расчётные способы определения концентрации этими методами. Рассматривается анализ много-компонентных систем. Описаны конкретные примеры типов многокомпонентных систем. Лек-ция описывает возможные ошибки фотометрических определений.

Фотометрические методы определения концентрации в присутствии мешающих компонентов

В лекции описана общая характеристика экстракционно-фотометрических методов ана-лиза, двухволновой и производной спектрофотометрии. Лекция содержит спектрофотометриче-ский анализ по спектрам отражения, фотометрическое титрование с индикатором и без него (конкретные примеры).

Раздел 5. Изучение равновесий в растворах

Лекции подробно рассматривают методы определения состава комплексного соединения: методы изомолярных серий, насыщения, метод сдвига равновесий, Асмуса. Описаны расчёты констант устойчивости комплексного соединения методами разбавления Бабко и изомолярных серий.

Методы определения состава комплексных соединений

В лекции подробно рассмотрены различные методы определения молярных соотношений [M]:[R] - метод изомолярных серий, насыщения; метод сдвига равновесия и пересечения кривых.

Расчет констант устойчивости комплексных соединений

В лекции изучаются различные методы определения устойчивости комплексных соединений: по изомолярной диаграмме, по кривой насыщения, метод разбавления Бабко. А также рассматривается

определение константы диссоциации органических реагентов: графический и расчетный вариант.

Раздел 6. Метрологические и аналитические характеристики

Лекция описывает метрологические характеристики фотометрического анализа: интервал определяемых содержаний (предел обнаружения и предел определения), воспроизводимость (сходимость) метода, правильность. Рассматриваются пути повышения чувствительности. Среди аналитических характеристик в лекции рассмотрены: чувствительность фотометрических определений, селективность (избирательность), продолжительность и производительность. Подробно описываются критерии чувствительности: коэффициент чувствительности, коэффициент аналитической чувствительности, чувствительность реакции и ме-тода. Разобраны условные характеристики чувствительности фотометрического определения, такие как: минимальная молярная концентрация (Cmin), определяемый минимум (m), коэффициент Сендела (ms*), удельное поглощение (a). Материал лекции также включает спо-собы повышения селективности.

Раздел 7. Исследование органического реагента как возможного для фотометрического определения неорганического иона

Лабораторный практикум представляет собой цикл работ по исследованию органического реагента, как возможного для определения неорганического иона.

Отчет по лабораторной практике

Отчет по лабораторной практике - отчет по исследованию органического реагента, где предоставлена разработанная фотометрическая методика по определению неорганического иона.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Спектральные методы анализа: учебное пособие / Е. В. Пашкова, Е. В. Волосова, А. Н. Шипуля [и др.]. Ставрополь: Ставропольский государственный аграрный университет, 2017. 56 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/76055.html
- 2. Неудачина Л. К. Физико-химические основы применения координационных соединений:Учебное пособие/Неудачина Л. К..-Екатеринбург:Уральский федеральный университет, ЭБС ACB,2014, ISBN 978-5-7996-1297-9.-124. http://www.iprbookshop.ru/68499.html

Дополнительная:

- 1. Пешкова В. М., Громова М. И. Методы абсорбционной спектроскопии в аналитической химии: учебное пособие для химических специальностей университетов/В. М. Пешкова, М. И. Громова; ред. И. П. Алимарин.-Москва:Высшая школа, 1976.-280.
- 2. Основы аналитической химии. Практическое руководство:учебное пособие для университетов и вузов по химико-технологическим. сельскохозяйственным, медицинским, фармацевтическим специальностям/Ю. А. Барбалат [и др.]; ред. Ю. А. Золотов.-2-е изд., испр..-Москва:Высшая школа,2003, ISBN 5-06-004679-6.-463.
- 3. Физико-химические методы анализа: Лабораторный практикум: учебно-методическое пособие / Г. К. Лупенко, А. И. Апарнев, Т. П. Александрова, А. А. Казакова. 2-е изд. Новосибирск: Новосибирский государственный технический университет, 2017. 87 с. ISBN 978-5-7782-3370-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/91709
- 4. Основы аналитической химии. Задачи и вопросы: учебное пособие для студентов вузов/В. И. Фадеева [и др.]; ред. Ю. А. Золотов.-2-е изд., испр..-Москва:Высшая школа, 2004, ISBN 5-06-004029-1.-412.
- 5. Булатов М. И., Калинкин И. П. Практическое руководство по фотоколориметрическим и спектрофото метрическим методам анализа/М. И. Булатов, И. П. Калинкин.-Л.:Химия,1972.-408.-Библиогр.: с. 388 403

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://www.fptl.ru/biblioteka/analiticheskaya-himiya.html Сайт по аналитической химии 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Спектрофотометрические методы анализа** предполагает использование следующего программного обеспечения и информационных справочных систем:

- 1. Презентационные материалы (слайды по темам лекционных и практических занятий);
- 2. Доступ в режиме on-line в Электронную библиотечную систему (ЭБС)
- 3. Доступ в электронную информационно-образовательной среду университета.
- 4. Приложение позволяющее просматривать и воспроизводить медиаконтент PDF-файлов «Adobe Acrobat Reader DC».
- 5. Программы, демонстрации видео материалов (проигрыватель) «Windows Media Player».
- 6. Программа просмотра интернет контента (браузер) «Google Chrome». доступ в электронную информационно-образовательной среду университета.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для проведения лекционных и практических занятий необходима аудитория, оснащенная презентационной техникой (ноутбук/компьютер, мультимедиа-проектор, экран для презентаций) с соответствующим программным обеспечением, меловой или маркерной доской.

Для проведения лабораторных работ необходима лаборатория - "Спектрофотометрические методы анализа", оснащенная специализированным оборудованием. Состав оборудования определен в Паспорте лаборатории.

Для проведения групповых (индивидуальных) консультаций необходима аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой или маркерной доской.

Для проведения текущего контроля необходима аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой или маркерной доской.

Для самостоятельной работы необходима аудитория, оснащенная компьютерной техникой с возможностью подключения к сети "Интернет", обеспеченным доступом в электронную информационно-образовательную среду университета, а также помещения научной библиотеки ПГНИУ

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с

доступом к локальной и глобальной компьютерным сетям.

- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Спектрофотометрические методы анализа

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ПК.2 Способен планировать работу и выбирать методы решения поставленных задач в выбранной области химии, химической технологии или смежных с химией науках

Индикатор	Индикатор Планируемые результаты Критерии оценивания результатов		
•	обучения	обучения	
ПК.2.2	ЗНАТЬ: теоретические основы	Неудовлетворител	
Выбирает	спектрофотометрических	Студент не знает теоретические основы	
экспериментальные и	методов анализа; способы	спектрофотометрического метода анализа,	
расчетно-теоретические	выражения концентраций в	методы определения концентраций веществ	
методы решения	аналитической химии; методы	и состава комплексных соединений. Студент	
поставленной задачи	определения концентрации	не умеет интерпретировать графические	
исходя из имеющихся	веществ, состава и	зависимости и делать по ним корректные	
материальных и	устойчивости к.с.;	выводы. А также правильно выбирать	
временных ресурсов,	теоретические основы	методы определения концентраций;	
готовит объекты,	пламенной фотометрии;	грамотно использовать расчетные формулы.	
оборудование и	устройство	Студент плохо владеет техникой работы на	
реактивы исследования	спектрофотометрических	современных физико-химических приборах,	
_	приборов; метрологические и	основными расчетами	
	аналитические характеристики	спектрофотометрического анализа.	
	метода.	Удовлетворительн	
	УМЕТЬ: правильно	Студент частично знает теоретические	
	интерпретировать графические	основы спектрофотометрического метода	
	зависимости и делать по ним	анализа, методы определения концентраций	
	корректные выводы; грамотно	веществ и состава комплексных соединений.	
	составлять алгоритм решения	Студент не умеет самостоятельно	
	практических задач; корректно	интерпретировать графические зависимости	
	выбирать методы определения	и делать по ним корректные выводы. А	
	концентраций; грамотно	также правильно выбирать методы	
	использовать расчетные	определения концентраций; грамотно	
	формулы.	использовать расчетные формулы. Студент	
	ВЛАДЕТЬ: техникой	слабо владеет техникой работы на	
	безопасности при работе с	современных физико-химических приборах,	
	современными физико-	основными расчетами	
	химическими приборами и	спектрофотометрического анализа.	
	химическими реактивами.	Хорошо	
	_	Студент хорошо знает теоретические	
		основы спектрофотометрического метода	
		анализа, методы определения концентраций	
		веществ и состава комплексных соединений	
		Студент умеет самостоятельно	
		интерпретировать графические зависимости	

Индикатор	Планируемые результаты Критерии оценивания результатов	
	обучения	обучения
		Хорошо
		и делать по ним корректные выводы. А
		также правильно выбирать методы
		определения концентраций; грамотно
		использовать расчетные формулы. Студент
		хорошо владеет техникой работы на
		современных физико-химических приборах,
	основными расчетами	
		спектрофотометрического анализа.
		Отлично
		Студент отлично знает теоретические
		основы спектрофотометрического метода
		анализа, методы определения концентраций
		веществ и состава комплексных соединений.
		Студент умеет самостоятельно
		интерпретировать графические зависимости
		и делать по ним корректные выводы. А
		также правильно выбирать методы
		определения концентраций; грамотно
		использовать расчетные формулы. Студент
		прекрасно владеет техникой работы на
		современных физико-химических приборах,
		основными расчетами
		спектрофотометрического анализа.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: 12/12/24/96

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 47 до 60

«неудовлетворительно» / «незачтено» менее 47 балла

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
Входной контроль	Входной контроль	Студент должен знать теорию
	Входное тестирование	фотометрического метода анализа, уметь работать на современных фотоэлектроколориметрах и спектрофотометрах; пользоваться основными расчетами фотометрического анализа.

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ПК.2.2	Методы определения	Студент должен знать теоретические
Выбирает экспериментальные и	состава комплексных	основы спектрофотометрических
расчетно-теоретические методы	соединений	методов анализа; способы выражения
решения поставленной задачи	Письменное контрольное	концентраций в аналитической химии;
исходя из имеющихся	мероприятие	методы определения концентраций;
материальных и временных		теоретические основы пламенной
ресурсов, готовит объекты,		фотометрии; устройство
оборудование и реактивы		спектрофотометрических приборов;
исследования		метрологические и аналитические
		характеристики метода.Студент должен
		уметь правильно интерпретировать
		графические зависимости и делать по
		ним корректные выводы; грамотно
		составлять алгоритм решения
		практических задач; корректно выбирать
		методы определения концентраций;
		грамотно использовать расчетные
		формулы.Студент должен владеть
		техникой безопасности при работе с
		современными физико-химическими
		приборами и химическими реактивами.
ПК.2.2	Раздел 6. Метрологические	Студент должен знать теоретические
Выбирает экспериментальные и	и аналитические	основы фотометрического метода
расчетно-теоретические методы	характеристики	анализа; способы выражения
решения поставленной задачи	Письменное контрольное	концентраций в аналитической химии;
исходя из имеющихся	мероприятие	методы определения концентраций.
материальных и временных		Студент должен уметь правильно
ресурсов, готовит объекты,		интерпретировать графические
оборудование и реактивы		зависимости и делать по ним
исследования		корректные выводы. А также правильно
		выбирать методы определения
		концентраций; грамотно использовать
		расчетные
		формулы.

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ПК.2.2	Отчет по лабораторной	Студент должен предоставить отчет по
Выбирает экспериментальные и	практике	исследованию органического реагента
расчетно-теоретические методы	Защищаемое контрольное	как возможного реагента для
решения поставленной задачи	мероприятие	фотометрического определения
исходя из имеющихся		неорганического иона по приложенной
материальных и временных		схеме.
ресурсов, готовит объекты,		
оборудование и реактивы		
исследования	TT U	
ПК.2.2	Итоговый контроль	Студент должен знать теоретические
Выбирает экспериментальные и	Итоговое контрольное	основы спектрофотометрических
расчетно-теоретические методы	мероприятие	методов анализа; способы выражения
решения поставленной задачи		концентраций в аналитической химии;
исходя из имеющихся материальных и временных		методы определения концентраций;
ресурсов, готовит объекты,		теоретические основы пламенной
оборудование и реактивы		фотометрии; устройство
исследования		спектрофотометрических приборов;
последования		метрологические и аналитические
		характеристики метода.Студент должен
		уметь правильно интерпретировать
		графические зависимости и делать по
		ним корректные выводы; грамотно
		составлять алгоритм решения
		практических задач; корректно выбирать
		методы определения концентраций;
		грамотно использовать расчетные
		формулы.Студент должен владеть
		техникой безопасности при работе с
		современными физико-химическими
		приборами и химическими реактивами.
	I.	1 1 F

Спецификация мероприятий текущего контроля

Входной контроль

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы самостоятельной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: ${f 0}$

Проходной балл: 0

Показатели оценивания	Баллы
Каждый вопрос теста оценивается в 1 балл. Всего в тесте 25 вопросов.	25

Методы определения состава комплексных соединений

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 9

Показатели оценивания	Баллы
За правильный ответ на вопрос по теории спектрофотометрического анализа - 1 балл; всего вопросов 15.	15
За правильный ответ на вопрос по теории фотометрического анализа - 0.5 баллов; всего вопросов 10.	5

Раздел 6. Метрологические и аналитические характеристики

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	Баллы
Для теоретического вопроса:за глубину (соответствие изученным теоретическим	5
обобщениям) и полноту (соответствие объему программы) раскрытия вопроса	
Для расчетной задачи:за правильный рассчитанный результат	3
Для теоретического вопроса:За логичность и последовательность ответа	2
Для теоретического вопроса:за владение терминологическим аппаратом при	2
использовании его при ответе	
Для расчетной задачи:за представление математического выражения основного закона,	2
используемого в данном методе анализа	
Для теоретического вопроса:за умение давать аргументированный ответ, делать выводы и	2
обобщения, устанавливать связи	
Для теоретического вопроса:за знание основных явлений и процессов изучаемой	2
предметной области, отсутствие фактических ошибок	
Для расчетной задачи:за правильно написанные реакции	1
Для расчетной задачи:за правильное представление числовых результатов	1

Отчет по лабораторной практике

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	Баллы
В оптимальных условиях построен градуировочный график. Определены границы	4
выполнения основного закона поглощения, а также средний кажующийся молярный	
коэффициент поглощения. По полученным значениям сделаны корректные выводы	
Определены молярные соотношения [Ме]:[R] различными методами (метод изомолярных	4
серий, насыщения (в варианте метода сдвига равновесий), метод Асмуса, метод	
пересечения	

кривых и др. Предоставлены соответствующие графики с корректными выводами. А также	
отображена возможная структурная формула комплексного соединения органического	
реагента с ионом металла	
Рассмотрено влияние количества буферного раствора и реагента на процесс	3
комплексообразования и построены соответствующие графики	
Сделан расчет константы устойчивости комплексного соединения по методу Бабко. Также	2
с возможным привлечением и других методов	
Грамотно оформлена таблица по визуальному скринингу и сделан правильный выбор	2
основного и мешающего элемента	
Построены спектры поглощения реагента и его комплекса по воде и по реагенту	2
(дифференциальная кривая). Графики грамотно подписаны. Сделан правильный выбор	
оптимальной длины волны и оптитимального значения рН комплексообразования	
Исследовано влияние мешающих элементов но основной процесс комплексообразования с	2
приложением соответствующих расчетных формул и рассчитанной относительной	
ошибкой определения	
Построена зависимость комплексообразования от времени (присутствует таблица).	1
Выбрана оптимальная толщина кюветы 1	

Итоговый контроль

Продолжительность проведения мероприятия промежуточной аттестации: **5 часа** Условия проведения мероприятия: **в часы самостоятельной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **40** Проходной балл: **18**

Показатели оценивания	
За знание основных явлений и процессов в спектрофотометрических методах анализа, отсутствие фактических ошибок .	15
За знание основных явлений и процессов в фотометрических методах анализа, отсутствие фактических ошибок.	10
За глубину (соответствие изученным теоретическим обобщениям) и полноту (соответствие объему программы) раскрытия вопроса.	5
За умение давать аргументированный ответ, делать выводы и обобщения, устанавливать связи.	4
За владение терминологическим аппаратом при использовании его при ответе.	3
За логичность и последовательность ответа.	3