МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра физической химии

Авторы-составители: Шеин Анатолий Борисович

Плотникова Мария Дмитриевна

Пантелеева Виктория Вячеславовна

Рабочая программа дисциплины

ТЕРМОДИНАМИКА ПОЛУЧЕНИЯ И РАЗЛИЧНЫХ ВИДОВ ОБРАБОТКИ МАТЕРИАЛОВ

Код УМК 74220

Утверждено Протокол №6 от «14» мая 2020 г.

1. Наименование дисциплины

Термодинамика получения и различных видов обработки материалов

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « M.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: **04.04.01** Химия

направленность Физическая химия

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Термодинамика получения и различных видов обработки материалов** у обучающегося должны быть сформированы следующие компетенции:

- 04.04.01 Химия (направленность : Физическая химия)
- **ПК.4** Способен проводить критический анализ полученных результатов и оценивать перспективы продолжения работ в выбранной области химии, химической технологии или смежных с химией науках **Индикаторы**
- **ПК.4.1** Критически анализирует и грамотно интерпретирует полученные результаты исследований, выявляет их достоинства и недостатки

4. Объем и содержание дисциплины

Направления подготовки	04.04.01 Химия (направленность: Физическая химия)
форма обучения	очная
№№ триместров,	4
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	4
Объем дисциплины (ак.час.)	144
Контактная работа с	48
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	12
занятий	
Проведение практических	36
занятий, семинаров	
Самостоятельная работа	96
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Защищаемое контрольное мероприятие (3)
	Письменное контрольное мероприятие (1)
Формы промежуточной	Экзамен (4 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Термодинамика получения и различных видов обработки материалов

Основные законы термодинамики

Предмет термодинамики. Основные понятия термодинамики. Основные постулаты термодинамики. Первое начало термодинамики

Вводная лекция. Формулируются основные понятия классической и химической термодинамики. Обозначаются предмет и метод термодинамики. Излагаются основные постулаты термодинамики. Раскрывается сущность первого закона (начала) термодинамики.

Температура. Уравнения состояния реальных газов. Вычисление работы

Вводится смысловое понятие "температура". Приводятся основные уравнения состояния реальных газов. Приводятся и анализируются основные уравнения для вычисления работы в различных процессах.

Теплоемкость. Вычисление теплоты. Теплоемкость газов и твердых тел

Формулируется понятие теплоемкости. Приводятся различные способы вычисления теплоты в термодинамических расчетах. Анализируется теплоемкость газов и твердых тел.

Термохимия

Обзор основных термохимических закономерностей и расчетов в классической термохимии. Анализируются эмпирические закономерности и способы определения тепловых эффектов в физических и химических процессах.

Энтропия. Возрастание энтропии при необратимых процессах. Обоснование второго начала термодинамики по Карно-Клаузиусу

Понятие "энтропия" в классической термодинамике. Приводится анализ изменения энтропии в обратимых и необратимых процессах. Энтропия - как тепловая координата состояния. Энтропия как критерий равновесия и направления процессов в изолированных системах. Приводится обоснование второго закона термодинамики по Карно-Клаузиусу.

Принцип Каратеодори. Значение второго начала термодинамики

Излагается принцип Каратеодори, анализируется его значение для классической термодинамики. Анализируется значение второго закона термодинамики для физики, химии и химического материаловедения.

Основные термодинамические функции

Дается детальный обзор основных термодинамических функций.

Термодинамические функции U, F, G, H. Соотношения Максвелла. Вычисление калорических коэффициентов

Анализируются термодинамические функции: внутренняя энергия, энтальпия, энергия Гиббса, энергия Гельмгольца как критерии равновесия различных процессов и критерии направления протекания самопроизвольных и несамопроизвольных процессов. Приводятся соотношения Максвелла. Анализируются способы вычисления калорических коэффициентов.

Вычисление энергии, энтальпии и энтропии. Характеристические функции и общие условия равновесия. Уравнения Гиббса-Гельмгольца

Приводятся и анализируются различные уравнения для вычисления внутренней энергии, энтальпии и энтропии. Анализируются термодинамические потенциалы как характеристические функции и

критерии направления процессов и критерии установления равновесия в различных термодинамических системах. Дается вывод уравнения максимальной работы (уравнения Гиббса-Гельмгольца).

Химический потенциал, химическая переменная и полные потенциалы. Летучесть Дается понятие о химическом потенциале, химической переменной, полном потенциале. Анализируется связь химического потенциала и термодинамических потенциалов. Вводится понятие "летучесть" (фугитивность), обсуждается необходимость формализации уравнений для идеальных газов и расширения областей их применимости в случае реальных газов.

Фазовые и химические равновесия

Излагаются основы класситческих термодинамических воззрений на фазовое и химическое равновесие.

Правило фаз. Уравнения Клапейрона-Клаузиуса. Диаграммы состояния однокомпонентных систем

Приводятся и анализируются основные определения (фаза, компонент, степень свободы, вариантность системы). Дается вывод уравнения Гиббса. Выводятся и анализируются уравнения Клапейрона-Клаузиуса. Рассматриваются типичные диаграммы однокомпонентных систем (диаграммы воды, серы, фосфора).

Фазовые переходы второго рода. Уравнения Эренфеста

Рассматриваются примеры фазовых переходов второго рода (сверпроводящее состояние, изменение симметрии кристаллов, потеря ферромагнитных свойств металлами и др.) Анализируются уравнения Эренфеста.

Химическая переменная. Закон действия масс. Изотерма и изобара химической реакции Вводится понятие химической переменной. Формулируется и выводится закон действия масс, анализируются конкретные примеры его применения. Дается вывод уравнений изотермы химической реакции Вант-Гоффа и уравнения изобары. Приводятся различные термодинамические расчеты с использованием уравнений изотермы и изобары.

Термодинамические расчеты констант равновесия. Гетерогенные химические равновесия Приводятся примеры термодинамических расчетов констант равновесия различных химических и физико-химических процессов. С использованием закона действующих масс анализируются гетерогенные химические равновесия. Приводится вывод закона действующих масс для гетерогенных химических реакций.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Шеин А. Б., Виноградова М. А. Термодинамика получения и различных видов обработки материалов (теоретические основы): учебное пособие для вузов/А. Б. Шеин, М. А. Виноградова.-Пермь, 2007, ISBN 5-7944-0907-X.-239.-Библиогр.: с. 236
- 2. Физическая химия : учебное пособие / Г. В. Булидорова, Ю. Г. Галяметдинов, Х. М. Ярошевская, В. П. Барабанов. Казань : Казанский национальный исследовательский технологический университет, 2012. 396 с. ISBN 978-5-7882-1367-5. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/64034.html

Дополнительная:

- 1. Стромберг А. Г., Семченко Д. П. Физическая химия: учебник для вузов/А. Г. Стромберг, Д. П. Семченко; ред. А. Г. Стромберг.-Москва: Высшая школа, 2001, ISBN 5-06-003627-8.-527.-Библиогр.: с. 511-515
- 2. Физическая химия. Теория и практика выполнения расчетных работ. Часть 2. Химическое и фазовое равновесие. Учебное пособие: Уральский федеральный университет, ЭБС АСВ, 2016. Физическая химия. Теория и практика выполнения расчетных работ. Часть 2. Химическое и фазовое равновесие/Степановских Е. И..-2016.-160, ISBN 978-5-7996-1691-5 http://www.iprbookshop.ru/66612.html
- 3. Карапетьянц М. Х. Химическая термодинамика: учебное пособие/М. Х. Карапетьянц.-Москва: Химия, 1975.-583.
- 4. Физическая химия. Теория и практика выполнения расчетных работ. Часть 1. Экстенсивные свойства гомогенных систем. Учебное пособие: Уральский федеральный университет, ЭБС АСВ,2016. Физическая химия. Теория и практика выполнения расчетных работ. Часть 1. Экстенсивные свойства гомогенных систем/Степановских Е. И..-2016.-136, ISBN 978-5-7996-1689-2 http://www.iprbookshop.ru/66611.html

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

При освоении дисциплины использование ресурсов сети Интернет не предусмотрено.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Термодинамика получения и различных видов обработки материалов** предполагает использование следующего программного обеспечения и информационных справочных систем:

презентационные материалы (слайды по темам лекционных и практических занятий); доступ в режиме on-line в Электронную библиотечную систему (ЭБС); доступ в электронную информационно-образовательную среду университета; тестирование.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

- 1. Лекционные занятия. Аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.
- 2. Занятия семинарского типа (семинары, практические занятия). Аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.
- 3. Самостоятельная работа. Аудитория для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченный доступом в электронную информационно-образовательную среду университета. Помещения Научной библиотеки ПГНИУ

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
 - 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными

компьютерами с доступом к локальной и глобальной компьютерным сетям.

6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Термодинамика получения и различных видов обработки материалов

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ПК.4

Способен проводить критический анализ полученных результатов и оценивать перспективы продолжения работ в выбранной области химии, химической технологии или смежных с химией науках

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
	,	· ·
ПК.4.1	В результате успешного	Неудовлетворител
Критически	освоения дисциплины студент	- не знает теоретический аппарат
анализирует и грамотно	знает основы современных	химической термодинамики и возможности
интерпретирует	теорий в области химической	его применения для решения
полученные результаты	термодинамики и способы их	междисциплинарных задач;
исследований, выявляет	применения для решения	- не умеет вести научную дискуссию по
их достоинства и	теоретических и практических	вопросам физической химии;
недостатки	задач в любых областях химии.	- не владеет навыком проведения
	- умеет самостоятельно ставить	термодинамических расчетов с помощью
	задачу физико-химического	известных формул и уравнений, в том числе
	исследования в химических	с помощью компьютерных программ.
	системах, выбирать	Удовлетворительн
	оптимальные пути и методы	- отсутствие систематических знаний теорий
	решения подобных задач как	химической термодинамики и возможностей
	экспериментальных, так и	их применения для решения
	теоретических; обсуждать	междисциплинарных задач;
	результаты физико-химических	- умеет отвечать лишь на ограниченный круг
	исследований, ориентироваться	вопросов физической химии;
	в современной литературе по	- навыком проведения самых простых
	физической химии, вести	термодинамических расчетов с помощью
	научную дискуссию по	известных формул и уравнений.
	вопросам физической химии.	Хорошо
	- демонстрирует способность и	- имеются незначительные пробелы в
	готовность проводить физико-	знаниях теоретического аппарата
	химические расчеты в области	химической термодинамики и возможностях
	химического материаловедения	его применения для решения
	с помощью известных формул и	междисциплинарных задач;
	уравнений, в том числе с	- умеет вести научную дискуссию по
	помощью компьютерных	вопросам физической химии, проблемы
	программ, проводить	возникают лишь при обсуждении узкого
	стандартные физико-	круга вопросов;
	химические измерения,	- владеет навыком проведения
	пользоваться справочной	термодинамических расчетов с помощью
	литературой по физической	известных формул и уравнений без
	химии.	применения компьютерных программ.

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		- знает теоретический аппарат химической
		термодинамики и возможности его
		применения для решения
		междисциплинарных задач;
		- умеет вести научную дискуссию по
		вопросам физической химии;
		- владеет навыком проведения
		термодинамических расчетов с помощью
		известных формул и уравнений, в том числе
		с помощью компьютерных программ.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: 12/36/96

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 50 до 60

«неудовлетворительно» / «незачтено» менее 50 балла

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
Входной контроль	Предмет термодинамики. Основные понятия термодинамики. Основные постулаты термодинамики. Первое начало термодинамики Входное тестирование	Знать основные законы термодинамики для идеальных газов. Знать основные положения теории электролитов. Уметь производить термодинамические расчеты основных термодинамических величин (теплота, работа, энтальпия, внутренняя энергия, энергия Гиббса), а также рассчитывать основные параметры растворов (активность, электропроводность). Владеть навыками решения типовых задач по курсу "Физическая химия".
ПК.4.1	Принцип Каратеодори.	Знание 1 и 2 начал термодинамики и
Критически анализирует и	Значение второго начала	умение их применять для равновесных и
грамотно интерпретирует	термодинамики	неравновесных химических систем
полученные результаты	Защищаемое контрольное	
исследований, выявляет их достоинства и недостатки	мероприятие	
ПК.4.1	Термодинамические	Умение производить расчеты
Критически анализирует и	функции U, F, G, H.	термодинамических параметров
грамотно интерпретирует	Соотношения Максвелла.	химических систем
полученные результаты	Вычисление калорических	
исследований, выявляет их	коэффициентов	
достоинства и недостатки	Защищаемое контрольное	
	мероприятие	

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ПК.4.1	Химический потенциал,	Умение рассчитывать, строить и
Критически анализирует и	химическая переменная и	интерпретировать результаты
грамотно интерпретирует	полные потенциалы.	построения диаграмм состояния, одно,
полученные результаты	Летучесть	двух и многокомпонентных систем
исследований, выявляет их	Письменное контрольное	
достоинства и недостатки	мероприятие	
ПК.4.1	Термодинамические	Знание основных законов
Критически анализирует и	расчеты констант	термодинамики равновесных и
грамотно интерпретирует	равновесия. Гетерогенные	неравновесных химических систем.
полученные результаты	химические равновесия	Умение производить
исследований, выявляет их	Защищаемое контрольное	термодинамические расчеты
достоинства и недостатки	мероприятие	перечисленных систем.

Спецификация мероприятий текущего контроля

Предмет термодинамики. Основные понятия термодинамики. Основные постулаты термодинамики. Первое начало термодинамики

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 0

Проходной балл: 0

Показатели оценивания	Баллы
Тест на основные понятия и уравнения из курса "Химическая термодинамика", состоящий	20
из 20 вопросов (1 балл за правильный ответ на вопрос теста)	

Принцип Каратеодори. Значение второго начала термодинамики

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	Баллы
Правильная формулировка письменного развернутого вопроса	10
Правильный ответ на вопрос с выбором правильного ответа (10 вопросов по 1 баллу)	10

Термодинамические функции U, F, G, H. Соотношения Максвелла. Вычисление калорических коэффициентов

Продолжительность проведения мероприятия промежуточной аттестации: 4 часа

Условия проведения мероприятия: в часы самостоятельной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	Баллы
Правильно проведен теоретический расчет основных термодинамических параметров	

	10
Правильно сделаны выводы	7
Грамотно сформулированы цели и задачи эксперимента	3

Химический потенциал, химическая переменная и полные потенциалы. Летучесть

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	Баллы
Правильно описаны фазы, входящие в состав системы	5
Представлены ответы на вопросы по диаграмме состояния (5 вопросов по 1 баллу)	5
Правильно построена диаграмма состояния	5
Правильно произведен расчет диаграммы	5

Термодинамические расчеты констант равновесия. Гетерогенные химические равновесия

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 20

Показатели оценивания	Баллы
Правильное решение задачи на расчет термодинамических параметров системы	12
Отчет об использовании компьютерных программ для термодинамических расчетов	10
Правильные ответы на вопросы с вариантом ответа	10
Развернутый и аргументированный письменный ответ на вопрос (4 вопроса по 2 балла)	8